- OpenQM

Teach
Yourself
OpenQM

Teach Yourself OpenQM

Copyright © Ladybridge Systems, 2011

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Special thanks to:
Publisher

Users of the OpenQM product who have contributed topics and

Ladybridge Systems Limited suggestions for this manual.

17b Coldstream Lane
Hardingstone
Northampton

NN4 6DB

England

Such information is always very much appreciated so please
continue to send comments to support@opengm.com.

Technical Editor
Martin Phillips

Cover Graphic

Ishimsi

Contents

Table of Contents

1 Introduction 4
2 The Command Environment 12
3 The QM File System 20
4 Editing Data 27
5 The VOC File 34
6 Dictionaries 43
7 Conversion and Formatting 50
8 Virtual Attributes 58
9 A and S-type Dictionary Records 77
10 The Query Processor 80
11 Alternate Key Indices 118
12 Paragraphs 123
13 Menus 140
14 Printing 142
15 Introduction to QMBasic Programming 144
16 What Next? 313

2.12-4

Teach Yourself OpenQM

Introduction

This self-study course teaches you about the OpenQM database product. Although
you may have experience of other database systems, this course assumes no prior
knowledge. The material is designed to be equally useful to those involved with QM
in their employment, leisure activities or in educational environments.

If you are a beginner, we recommend that you work through this course strictly in
sequence as each stage may rely on knowledge acquired in earlier stages. If you are
experienced, you may wish to skip some sections but try to take care not to skip
things that you have not met before.

There are extensive exercises that cover the key areas of the QM environment
including the command processor, database files and dictionaries, query processing
and programming. All of these can be performed using the free Personal Version of
QM, an evaluation licence, or a fully licensed commercial installation. We strongly
recommend that you tackle all of the exercises and the examples included in the text.
The more you experiment with the product, the more you will learn about it. In
particular, note that there are some exercises that form a sequence through the
sections that cover dictionaries and the query processor, each depending on the
earlier ones. Similarly, the programming section builds an application step by step
over the entire set of modules.

The material presented here has been assembled from modules that span ten days
when delivered as a trainer led course. Do not expect to complete it in an afternoon!
Instead, take your time and ensure that you fully understand each step before
moving on.

As you work through this material, you may wish to consult the full QM Reference
Manual or the help system (they contain the same text) for more detailed
descriptions of specific syntax elements. In the longer term, you may find it useful to
keep a printed copy of the QM Quick Reference Guide to hand.

Document Conventions

All QM documentation uses a simple set of conventions in descriptions of commands
or language elements. For example

DELETE.FILE {DATA | DICT! file.name {FORCE}

Items in bold type (DELETE.FILE) are words that must be entered as they appear
in the description except that in most instances they may be in either upper or lower
case.

Items in italics (file.name) represent places in commands or language statements
where some variable data is required. In this case it is the name of a file.

Items enclosed in curly brackets (e.g. {FORCE}) are optional parts of a command or
statement. The curly brackets are not part of the text and should not be typed.

2.12-4

Introduction 5

Lists of alternative keywords are shown separated by vertical bar characters (e.g. {
DATA | DICT}).

Items that may be repeated are followed by ellipsis (...). The text explains the rules
governing related items.

The mark characters introduced in the description of the data model are represented
by IM, FM, VM, SM and TM.

What is a Database?

There are many definitions but for our purposes let's say that a database is a
collection of data organised in a manner that allows retrieval of specific items in an
efficient manner. Ignoring computers for a while, imagine trying to find the
telephone number of a friend in the phone book if it was not sorted into order. You
would need to read through the directory until you found the entry you were looking
for. This might be near the beginning; it might be near the end. On average you
would need to read half of the directory. This would be totally useless for any
realistic purpose.

Of course, the phone book is not constructed in this way. Instead, the entries are
sorted into alphabetical order and each page has a heading to tell you what entries
are on the page. You therefore only need to find the right page and then scan
through the items on that page. The phone book perhaps fits our definition of a
database as it is organised in a way that allows you to find items quickly.

It is interesting to look at what you do subconsciously when looking for a phone
number. If you have a phone book to hand, read no further than the end of this
sentence and then go to look up the first entry for "A Thomas".

What did you do? Well, hopefully, you did not start at page 1 and read through page
by page until you found what you where looking for. You probably dived in part way
through, looked to see what was on that page and then decided whether to work
forwards or backwards. You probably also applied a little prior knowledge of the
distribution of names, starting about two thirds the way through the directory and
then moving forwards or backwards several pages at a time based on how far your
were from your target entry.

This sort of searching process is typical of the way in which computers find things in
large databases. The example above is closely related to a simple technique known
as a "binary search" that can find an item in sorted lists with only minimal
examination of the data. In fact, it is possible to find any entry in a list of a million
items by examining at most just twenty of them. If you still have the phone book to
hand, try the following method to find A Thomas again:

Open the phone book at (roughly) the centre page. If this is the page we want, well
done, that was too easy! Assuming that things did not fall out that quickly, decide
which half of the book contains the entry you want. Now turn to the page in the
centre of that half of the book. Keep doing this, halving the size of the section of

2.12-4

Teach Yourself OpenQM

interest until you arrive on the right page.

The binary search described above is just one of a range of techniques used by
database software to find information. We will meet others as we discuss the
OpenQM product. The important thing at this stage is simply that it is an example of
what we mean when we define a database as being organised in a manner that
allows efficient data retrieval.

Relational Databases

There are many different databases available but they all fall into a small number of
basic types. One of these is the relational database such as Oracle or Access. A
relational database holds data in the form of tables in just the same way that we
could store information as tables written on paper. (The term relational infers simply
that the data in a table is related in some way).

Throughout this material, we will base our examples on a simple order processing
system. This is a concept that is easily grasped whether or not you are involved in
sales. The system that we construct will grow in complexity as we progress but for
now we only need to hold information about the orders that each customer has
placed. Keeping things very simple, at a minimum we might need a table such as
that shown below.

Order no Date Customer Product | Quantity
1001 12 Jan 05 1728 107 2
1002 12 Jan 05 3194 318 2
1003 13 Jan 05 7532 220 1
1004 13 Jan 05 1263 318 2

In this simple table, each row represents an order and each column holds data
associated with that order.

Designing efficient databases requires some thought about what to store and, once
we get to multiple tables, how to organise it. Much academic work has been done on
the underlying theory. Relational databases are built following a set of rules known
as the Laws of Normalisation [E. Codd : "A Relational Model of Data for Large
Shared Data Banks", Communications of the ACM, June 1970]. The process of
transforming data to fit the rules of a relational database is called normalisation
and the steps in this process are referred to as first normal form, second normal
form, and so on. We are not going to study these rules in detail here. If you are
interested, there are many computing textbooks that cover this material.

The First Law of Normalisation states that we may not have repeating data. In
practical terms this means that we cannot add extra columns to the right of the table
to allow a customer to order more than one item at the same time.

2.12-4

Introduction 7

Order no Date Customer Product |Quantity |Product [Quantity
1001 12 Jan 05 1728 107 2

1002 12 Jan 05 3194 318 2 452 3

1003 13 Jan 05 7532 220 1

1004 13 Jan 05 1263 318 2

Clearly this restriction is not acceptable in the real world.

There are many reasons why the Laws of Normalisation do not allow this, mostly

based on the way in which the data might be stored by the computer system. This is

especially true for the programming languages that were most widely used for
business applications when the relational model was designed. If we are to observe
the First Law of Normalisation, we must reconstruct our data in some way that
removes the additional columns. One way would be to split an order that has
multiple item across several rows of our table.

Order no Date Customer Product |Quantity [Lines
1001-1 12 Jan 05 1728 107 2 1
1002-1 12 Jan 05 3194 318 2 2
1002-2 12 Jan 05 3194 452 3 2
1003-1 13 Jan 05 7532 220 1 1
1004-1 13 Jan 05 1263 318 2 1

Although we can now store as many items in an order as we wish, things have
become more complicated. Firstly, the details of a single order are now split across
multiple rows of our table. Secondly, we have been forced to add an extra column so
that we can know how many lines there are in the order. Also, we have duplicated
some information, a step which actually breaks another of the Laws of
Normalisation. To avoid this last complication, a typical implementation of this sort
of data in a fully normalised system (e.g. Oracle or Access) would break the order
data into two separate tables, one containing the basic information about the order

and the other containing the details of the items ordered.

Order no Date Customer |Lines Detail Ref Product |Quantity

1001 12 Jan 05 1728 1 1001-1 107 2

1002 12 Jan 05 3194 2 1002-1 318 2

1003 13 Jan 05 7532 1 1002-2 452 3

1004 13 Jan 05 1263 1 1003-1 220 1
1004-1 318 2

Things are becoming complex and this is supposed to be a trivial application!

Teach Yourself OpenQM

Multivalue Databases

Multivalue database products avoid this complication by removing the need to
adhere to the First Law of Normalisation. We allow a single cell of our table to hold
more than one value (hence "multivalue").

Order no Date Customer Product |Quantity
1001 12 Jan 05 1728 107 2
1002 12 Jan 05 3194 318 2
452 3
1003 13 Jan 05 7532 220 1
1004 13 Jan 05 1263 318 2

If you have spent many years working with fully normalised databases, you are
probably shaking your head and saying that we cannot do this. Yes, we can do it; it's
just a different way to hold our data.

Think about the advantages: The entire order is all held as a single record; there is
no redundant duplication of data; we do not need an item counter.

The end result of this is that our multivalue view of the world produces applications
that have fewer tables compared to its fully normalised counterpart, often very
many fewer. As a result of this, it is typically much quicker (and hence cheaper) to
implement and faster to execute. It is also much easier to modify as new features are
added to the data. Having said this, there will always be situations where this model
is not ideal. In such cases, you can freely revert to using the fully normalised
approach because fully normalised data can be stored in a multivalue database. The
opposite tends not to be true.

The time has come to introduce some terminology. A typical application will have
many tables, perhaps hundreds or even thousands though, as we have seen, the
multivalue model usually results in far fewer tables than in other data models. Each
table is stored as a file. The rows of our table are known as records and the
columns as fields (some systems refer to these as attributes). The data stored in a
field may be made up of multiple values.

Note how in our multivalued implementation of the above example, the values in the
product and quantity columns are related together. For any particular order, the first
product number belongs with the first quantity, the second product number belongs
with the second quantity and so on. A typical realistic table may have several
separate sets of fields that are linked in this way. The relationship between the
values in different fields (e.g. product and quantity above) is referred to as an
association.

By adopting this data model instead of using additional columns, the data model
imposes no limit to the number of items that may be included in an order.

The multivalue data model allows us to go one step further; values may be
subdivided into subvalues. Perhaps every time that we sell an item we need to note

2.12-4

Introduction 9

its serial number. Thus each of the parts in our example above would have a list of
serial numbers associated with it. Order 1002 in the example above might become

Order no Date Customer Product |Quantity |Serial
1002 12 Jan 05 3194 318 2 21222
21223

452 3 41272

41723

41728

This extended form of the relational database model is at the heart of the QM
database. You may also see it referenced as post-relational, nested table or NF2
(non-first normal form). They all mean the same thing.

It is useful to understand how the multi-valued data is represented inside QM. A
database record in memory or within the file is stored as a sequence of characters
known as a dynamic array. The boundaries between the fields are marked by a
special character called a field mark. The boundaries between values within a
multi-valued field are marked by value marks and the boundaries between
subvalues are marked using subvalue marks. In our printed representation of a
dynamic array, we use FM, VM and SM to represent the mark characters.

Thus the data for order number 1002 above would be represented as
13527rm3194rMm318vm452rm2v3rm212225M21223vm41272sm41723sm4 1728

There are several important things to notice about this example. Firstly, the order
number is not in the data. Every record must have a unique value by which it is
identified in the table. This record id or primary key may be any sequence of
characters and can be thought of as being the name of the record. Although it must
be stored in the database internally, it is not considered to be part of the data. When
an application asks the system to retrieve record 1002 from the orders table, the
record id is used to locate the record but is not part of the returned data.

Secondly, note that the date (12 January 2005) has been stored as the number
13527. QM stores dates internally as a number of days from a reference date. We
will discuss this in detail later.

Thirdly, notice that because we use mark characters to separate each field, value or
subvalue, the actual data is of variable length. Although an application may display
the customer number as four digits, the underlying database does not impose any
restriction. We do not need to redesign the data structures when our ten thousandth
customer walks through the door though the data entry screen may need a small
change.

The way to read a record structure such as that shown above is to dismantle it layer
by layer. First find the field marks to separate out each field, then look for the values
within the fields, and finally the subvalues within the values. Use of multi-values is
very common; subvalues are much less often used so do not worry too much if you are
having trouble grasping the concept - we are asking you to think in four dimensions!

There are actually five mark characters, the additional two being the item mark

2.12-4

10

Teach Yourself OpenQM

(sometimes called the record mark which is hardly used in QM) and the text mark
which is used when splitting long text items into multiple lines. We will meet both of
these again later.

If you are familiar with the way in which character data is stored as single byte
values, you can see from the table below that the mark characters are stored
internally as the final five characters of the character set. This was no problem when
the data model was originally devised as the upper half of the character set was not
defined. This is no longer true and the upper half of the character set has various
definitions largely corresponding to language specific characters such as the accented
characters of European languages. Unfortunately, using the final five characters for
our own purposes means that the characters that we have displaced cannot be
stored. As an example, using the most common character set used in Europe, the
subvalue mark replaces the German u-umlaut (ii) so we cannot store the German
name Miller correctly.

ASCII Symbol @var
Item mark 255 M @IM
Field mark 254 FM @FM
Value mark 253 VM @VM
Subvalue mark |252 SM @SM
Text mark 251 ™ @TM

The symbol column shows how these characters are represented in examples in QM
documentation. The @var column gives symbolic names that can be used for these
characters in some places within QM as we will discuss later.

The History of Multivalue Databases

The original multivalue database is usually attributed to Dick Pick (hence the
frequently used term "Pick databases") back in 1968 though their origins can be
tracked back further. The current D3 database from TigerLogic is a direct
descendant of the original Pick product but there have been many other players

along the way, some large, some small. Some of these are significant to the way in
which QM works.

The Reality database, originally implemented on McDonnell Douglas systems but
now owned by Northgate Information Solutions, closely follows the Pick style of
operation. The long defunct Prime Information database from Prime Computer
retained the same data model and general principles but made some fairly
significant changes to the command and programming languages.

In the mid-1980's the various companies with multivalue products hit a problem. The
world was standardising on the Unix operating system but these products did not
run on Unix. As a result of this, McDonnell Douglas developed an "open systems"
version of Reality (Reality X) and Prime Computer developed the Pl/open database.
At the same time, two start up companies appeared each with their own Unix based

2.12-4

Introduction 11

multivalue implementation, VMark (UniVerse) and Unidata (Unidata). These
companies set out to capture users from the existing products as well as taking on
new users. The history is long and complex but to bring it up to date in one step,
UniVerse and UniData are now both owned by Rocket Software.

The UniVerse and Unidata products (usually referred to collectively as U2) follow the
Information style of implementation by default but have features that allow them to
look more like the Pick style if required.

QM was originally developed in 1993 for use as an embedded database but not
released as a product in its own right until 2001. Like the U2 products, it is an
Information style database but has options to make it more like Pick for those who
need it. Except where noted, the examples and exercises in this course are based on
QM "straight out of the box" with no compatibility options enabled.

Developers who try to defend the fully normalised relational model usually start by
pointing out that the multivalue model is 40 years old and hence cannot be of
relevance in the modern world. In saying this, they conveniently ignore that the
relational and multivalue models were developed at the same time. A better way to
look at this is that nothing in the computer industry lasts 40 years unless it has
something good about it. Once you get started with the multivalue model you will
wonder why anyone would ever use anything else.

[All trademarks referenced in this introduction are acknowledged.]

2.12-4

12

Teach Yourself OpenQM

The Command Environment

In this section we will explore the QM command environment and learn to execute
simple commands.

Accounts

The word "account" has many meanings in the computer world. In QM, it refers to a
place to work, typically corresponding to a software application. A QM system may
have many separate accounts representing different applications (sales, payroll, etc)
or different versions of an application (development, test, production, etc).

An important concept in QM is that we try to avoid users needing to know about the
underlying operating system (Windows, Linux, etc.) that is running on their system.
If you do understand such things, it is worth knowing that from outside QM, an
account is represented by an operating system directory that contains the data files,
programs, etc that are used by the application. All QM systems also have a System
Administrator account (QMSYS) under which all the QM system software and many
control files can be found.

Although accounts represent separate working environments, they may share
resources such as files and programs. For example, a system with two applications
representing sales order processing and stock control is likely to need some degree of
communication between the two. The QMSYS account is a good example of this as it
contains a number of files that are visible from all other accounts.

Accounts can be created by the System Administrator using built-in administrative
tools (more later) or simply by trying to run QM in a directory which is not already
set up as an account.

The most important file in an account is the VOC (vocabulary) file which contains all
the words and symbols that can be used within the account to form commands. If you
are moving to QM from a Pick style system, the VOC is broadly similar to the MD
file of your old system.

The VOC also contains references to all the files (database tables) accessible from the
account and other user defined items. A newly created VOC has around 500 system
supplied items in it and will usually grow considerably as an application is
developed. There is a whole section on the VOC file later in this course.

Installation

This course assumes that QM is already installed on your system. If it is not and you
are using a Windows system, a description of the installation process follows. For
other operating systems, see the relevant section of the @M Reference Manual for

guidance on how to install QM.

Although QM can be supplied on CD, users normally download the software from the

2.12-4

The Command Environment 13

OpenQM website, www.openqm.com, which ensures that you have the latest version
of this rapidly developing product. To download the software, follow the link to the
download page and select the appropriate version for your platform. Right click on
the Download link and select Save Target As to copy the install file to your system.

If you have a commercial licence or are using an evaluation copy of QM, you can also
download the AccuTerm terminal emulator by following the link from the QM
download page. The activation code is included with your QM licence.

You must have administrator rights on the PC to install QM as it updates restricted
system files. The self-extracting install file has a name of the form qm_1.2-3.exe,
where the numeric components identify the release. Execute this file by, for example,
double clicking on it in Windows Explorer. The first screen confirms that you are
about to install QM. Click on the Next button to continue.

The install process now displays the software licence. Tick the box to say that you
accept the terms of this licence and click on the Next button.

QM can be installed in any convenient location. The default is C:\QMSYS but this
can be changed. An upgrade installation will offer the directory used for the previous
installation as the default.

Having selected the installation directory, you will be asked to specify the program
group folder name in the Start menu. This defaults to QM and is probably best left
unchanged.

The final step before installation commences is to select the components to be
installed. The components offered are:

QM Database The QM database itself.

QM Help This document as a Windows help file.
QMTerm A simple terminal emulator.

QM Online Documentation Adobe Acrobat style pdf documentation.
QMAdmin A Windows based system administration tool.
QMClient The Visual Basic API for Windows developers.

The default action is to install all of these components and should only be changed
for non-standard installation.

After the main installation has been performed, the install process displays a screen
in which the authorisation data can be entered. If you are installing an upgrade, the
previous licence data is displayed and can be retained by simply pressing the return
key in each field. If you are installing a new commercial licence or an evaluation
licence, enter the details from your licence. If you are planning to use the free
Personal Version, simply enter the word Personal in the licence number field.
Everything in this course with the exception of the data encryption material can be
done on the Personal Version but it has some limitations.

If this is an upgrade installation, you will be asked if the VOC file should be updated
in all accounts. Although this is probably a good idea, users will be asked about
upgrading when they enter QM if it is left until later.

2.12-4

14

Teach Yourself OpenQM

The installation process then runs the QM Configuration Editor to allow changes to
be made to configuration parameters. Leave everything at its default settings and
click on Close

Finally, the installer offers to show the readme file.

If you are an experienced user of Windows command line tools, note that the
installation process does not add QM to the Windows PATH environment variable.
Depending on how you plan to operate your system it may be worth adding the bin
subdirectory of the QMSYS account to the PATH variable.

Entering and Leaving QM

Although QM allows developers to construct applications that are accessed via a web
browser or via graphical screens typical in Windows systems, we will do most of our
work via the character mode "green screen" interface. We will discuss web and GUI
(graphical user interface) concepts later.

A commercial QM licence includes free activation of the AccuTerm terminal
emulator. Although we recommend this and AccuTerm includes some features
specifically for QM users, QM should work with most other terminal emulators. If
you are using the Personal Version of QM, AccuTerm is not included.

The time has come to get logged in. There are several ways to do this but you may
need some help from your System Administrator as you get started:

¢ On a Windows system, navigate from the Start menu to Programs, QM and select
QMConsole. This creates what is known as a console session.

e On a Linux, FreeBSD or Mac system, type "qm" at the operating system command
prompt when in the account directory. This assumes that your System
Administrator has added the QMSYS account bin subdirectory to the PATH
environment variable that controls where your system looks for commands. If not,
you will have to use the full pathname (probably /usr/qmsys/bin/qm).

¢ Directly over a network. Your System Administrator will need to set up a user
name and password for access to the system. By default, QM uses port 4242 but
this may have been changed on your system. Make sure that whatever port you
are using is open in your firewall.

Depending on how your system has been set up, you may need to enter an account
name as part of this process. Consult your System Administrator for advice. Do not
use the QMSYS account for development or training purposes though you may need
to start there and create a private account of your own. Once in QM, you can create
your own account to run the exercises in this course by typing

CREATE.ACCOUNT name pathname

where name is the name you would like to give the account and pathname is the
operating system pathname for the account directory. For example,
CREATE.ACCOUNT JOE C:\JOE

2.12-4

The Command Environment 15

To exit from QM when you have finished your session, type QUIT, LOGOUT or OFF.

Case Inversion

As you start to use QM, you will probably notice something very strange happening.
The characters that you type are "case inverted" - that is, lowercase letters are
displayed in uppercase and vice versa. The original multivalue systems date back to
a time when many terminals did not have lowercase letters and hence the command
language was written to work in uppercase. To make it easy to operate in situations
where a user may be switching between a QM session and, for example, a Word
document, QM normally applies case inversion so that the user does not need to keep
hitting the caps lock key.

Actually, QM is largely case insensitive but this feature is retained for compatibility
with other systems. It can be disabled by typing
PTERM CASE NOINVERT

and this would usually be done as an automated part of the login process for an end
user of the application. We will discuss more about how to do this later.

QM Command Syntax

A complete QM command is known as a sentence. A sentence always begins with a
verb which is the command name. This may be followed by qualifying information
such as file names, record ids and keywords. Sentences may be executed directly
from the command prompt or stored in the VOC for later execution.

The individual tokens that make up a sentence are separated by one or more spaces.
Where a token contains spaces, it should be enclosed in quotes. In most cases, QM
allows use of single quotes, double quotes or backslashes interchangeably.

Some simple commands with no qualifying information are shown below. Try each of
these.

CS Clears the terminal screen

DATE Displays the date and time in 12 hour clock format
LISTU Displays a list of active QM users

TIME Displays the date and time in 24 hour clock format
WHO Displays your QM user number and account name

More complex commands take qualifying information. Some useful ones are shown
below but we are not yet in a state to try these.

DATE.FORMAT ON In common with other multivalue products, QM defaults
to American date format (month day year). This
command switches to European date format. Used with

2.12-4

16

Teach Yourself OpenQM

OFF in place of ON, it switches back to American date
format. You will not notice any difference to the output
from DATE or TIME as these commands explicitly set
their date display format. The DATE.FORMAT setting
only affects situations where an application says "print a
date" but doesn't specify how it should appear.
Application software is usually written to output dates
in specific formats.

LOGTO account Switches to the named account. This allows a user to
move between accounts subject to having sufficient
access rights.

PHANTOM command Executes the given command as a background process
allowing the terminal to be used for other tasks. A
phantom process has no terminal associated with it,
therefore it will fail if it asks for input. Any output that
would normally have appeared on the terminal is
written to the file system in a file named $COMO.
Phantoms are typically used for overnight processing
and other lengthy tasks.

Many commands reference records in data files. These tend to share a common
syntax that takes the file name and a record id (or, in some cases, multiple record
ids). Some examples are:

CT file id Copies the named record to your terminal display (CT is
short for Copy to Terminal).
DELETE file id Deletes the named database record. Careful! Once you

have deleted a record, it has gone. There is no equivalent
of the Windows recycle bin to undo your mistakes.

Now is a good time to create the demonstration database that is used throughout
this course. To do this type
SETUP .DEMO

in an account that you will use for the exercises in this course. This command creates
several files related to two demonstration databases. For the purposes of this course,
we will be interested in the files belonging to a very simple stationery shop sales
application; STOCK, CUSTOMERS and SALES. You can take a quick look at the
content of the STOCK file by typing

LIST STOCK

and similarly for the other files.

You can repeat the SETUP.DEMO command at any time to revert back to the
original file structure. If you want to restore the original data but leave any new
items that you have created in place, use

SETUP.DEMO UPDATING

Now try the CT command by typing
CT SALES 12001

What does this show? As we will discuss in more detail later, the SALES file has

2.12-4

The Command Environment 17

seven fields representing the order date, customer number, part number, quantity,
price, payment date and payment value. Fields 3, 4 and 5 are associated multivalued
fields because a customer may buy more than one thing. Similarly, we might want to
allow a customer to pay for his order in stages so fields 6 and 7 form a separate set of
associated multivalued fields.

The CT command shows this as

SALES 12001
> 14400
1000
001y003
2yl
170y170
14407
510

~N~NoOhWNE

The first line shows the file name and record id. The remaining lines are the fields
from this record. Field 1 does not look like a date but it 1s. This is because QM stores
dates internally as a number of days from a reference point in time. We will discuss
this in detail later but the value 14400 corresponds to 4 June 2007. The multivalued
fields may not appear on your terminal exactly as shown above because different
terminal emulators show the value mark character in varying ways. You will find it
useful to discover how your particular terminal emulator displays the mark
characters. A well behaved application never displays marks as they represent the
boundaries between pieces of data but there are times when we might need to look at
how data is stored internally.

Notice that the data record contains nothing to show associations. This is the job of
the dictionary that defines the data layout for the file. There is a whole section on
database dictionaries later.

The CT command is useful for displaying simple text items (which we will do several
times) and it is a good tool for detecting errors in the way in which data is stored. For
example, a common mistake in one of the programming exercises later in this course
results in an extra value mark on the end of the list of part numbers. This would be
clearly visible in the output from the CT command but might be quite difficult to spot
using other tools.

The Command Stack

QM keeps a record of the recent commands that you executed. The command

processor includes mechanisms by which you can look back at these commands,

modify them and repeat them. For this to work correctly, your QM session must be

set up to match the terminal type that you are using. Normally, this happens

automatically but you can check the terminal type that QM is using by typing
TERM

and, if it is incorrect, change it with, for example,
TERM vt100-at

to select the vt100 terminal emulation. The -at suffix in the example above is for use
with AccuTerm. Other emulations of a vt100 terminal should not use this suffix. A

2.12-4

18

Teach Yourself OpenQM

QMConsole session uses a terminal type of "gmterm".

To walk back through the command history, press the cursor up key. If you go too
far, you can walk back down again with the cursor down key. The currently
displayed command can be repeated simply by pressing the return key and you can
edit a command using the horizontal cursor keys, backspace, etc. The full list of edit
operations is

Ctrl-A or HOME
Ctrl-B or Cursor Left
Ctrl-D or DELETE
Ctrl-E or END

Ctrl-F or Cursor Right
Ctrl-G

Ctrl-K
Ctrl-N or Cursor Down
Ctrl-O or Insert

Ctrl-P
Ctrl-R

Ctrl-T

Ctrl-U

Ctrl-Z or Cursor Up
Backspace

Move cursor to start of command.
Move cursor left one character.
Delete character under cursor.
Move cursor to end of command.
Move cursor right one character.

Exit from the command stack and return to a clear
command line.

Delete all characters to the right of the cursor.
Display "next" command from command stack.

Toggle insert/overlay mode. When in overlay mode,
characters entered at the keyboard overwrite any
existing data at the cursor position. In insert mode,
new characters are inserted into the existing text.

Display "previous" command from command stack.

Search back up the command stack for a given
string.

Interchange characters before cursor.
Convert command to uppercase.
Display "previous" command from command stack.

Backspace one character.

Although the control key codes above may be a little difficult to remember at first,
you will find that they are shared by many components of QM and you will learn
them quite quickly.

QM also supports a second command editing system based on commands prefixed by
a period (.) for compatibility with other multivalue products. For example typing .L
at the command prompt will show you a list of the most recent 20 commands. For
more details, see the QM Reference Manual.

Pagination

As you continue using QM you will notice that commands that produce more than a
single page of output display a continuation prompt at the end of each page. For the
query processor, the options available may vary. For other commands, the options

are:

A Abort processing and return to the command prompt, possibly running the
ON.ABORT paragraph described later.

2.12-4

The Command Environment 19

Q Quit the command and continue processing.

S Suppress pagination, continuing with no more pagination prompts. This is
useful when capturing the output locally with the terminal emulator.

Any other key continues processing.

Aborting Commands

Sometimes we need to terminate processing because something is not working as
expected. We can do this with the break key which is usually Ctrl-C but may be
moved. Pressing this key displays a list of options, some of which do things that we
have yet to discuss:
A Abort. Returns to the command prompt in exactly the same way as an
abort generated by an ABORT statement in a QMBasic program or an
ABORT command in a paragraph. The ON.ABORT paragraph is executed,
if present. The default select list (list 0) will be cleared if it was active.
D Only offered when appropriate, this option enters the QMBasic debugger.
G Go. Continues processing from where it was interrupted. If the terminal
supports the necessary operations, QM will restore the display image to
remove the prompt.
P Creates a process dump file and continues execution.

Q Quit. Returns from the current command to the paragraph, menu,
program or command prompt that initiated the command. The
ON.ABORT paragraph is not executed. The default select list (list 0) is not

cleared.

S Stack. Displays the call stack showing the program name and location for
each entry.

W Where. Displays the current program name and location.

X Exit. Aborts totally from QM without executing the ON.EXIT paragraph.
This option should only be used if QM appears to be behaving incorrectly.

? Help. Displays a brief explanatory help text for each option.

Note that applications often run with the break key disabled in live environments for
additional security.

Compatibility Options

If you are moving to QM from another multivalue environment, you may find that
although QM is essentially similar to the environment you have come from, it has
some significant differences. QM broadly follows the "Information style" model but
has options to enable closer compatibility with other systems. You can find out more
about these by looking at the OPTION command and the $MODE compiler directive
in the QM Reference Manual. Except where specifically stated, this course uses QM
in its default settings.

2.12-4

20

Teach Yourself OpenQM

The QM File System

A QM application stores its data in files (some users call these tables) each of which
usually has a corresponding dictionary describing the data file. For the purposes of
this section, a dictionary is just a file with a special purpose. (You may have come
from a database environment that stores a schema that provides a view of the
entire database. In a multivalue database, each file has its own separate dictionary
that describes the content of the file and its relationship with other files).

QM has two types of file which offer different characteristics and are appropriate to
different usage in the application software. Directory files do not give high
performance but allow data to be viewed or modified from outside of the QM
environment. They are therefore frequently used for data interchange with other
software. Dynamic files offer very high performance but cannot be accessed from
outside QM. They are typically used for the bulk of the data stored by an application.

In most cases, application software doesn't care what file type is used.

Creating and Deleting Files

Files are created using the CREATE.FILE command. In its simplest form, this is
CREATE.FILE name

for a dynamic file or
CREATE.FILE name DIRECTORY

for a directory file. There are additional options discussed in the @M Reference
Manual that allow the file to be created in a non-default location or modify the
configuration details for a dynamic file. In most cases, these can be omitted.

The name component is the name to be used to reference the file within QM. This
must not already exist as a record in the VOC file. File names used by an application
should be chosen to be meaningful but not so long that they become a nuisance to
type. The name may be formed from any printable characters but must not contain
spaces. An operating system directory will be created to represent the file and this
will have the same name as the QM file unless this is not a valid operating system
file name. In this case QM manufactures a valid operating system file name based an
automatic translation of the name used in the command. From inside QM, you do not
need to know about this translation.

A file normally has two parts; a data part that holds the application data and a
dictionary part that holds a definition of the structure of the data records. The
dictionary also sets default actions for the query processor.

The CREATE.FILE command normally creates both the data and dictionary parts of
the file. The operating system name for the dictionary is the same as the data
portion name but with a suffix of .DIC added. A default description of the record id
named @ID is automatically added to the dictionary and may be modified but must
not be removed. An application developer will normally add dictionary entries to

2.12-4

The QM File System 21

describe each field of the data record.

It is possible to create a data file that has no dictionary by prefixing the name with
DATA. This might be used if, for example, the file holds simple unstructured text
rather than being a database table with defined fields. For example,

CREATE.FILE DATA PROGRAMS

Similarly, the DICT keyword can be used to create just a dictionary. A dictionary
that has no data file is probably meaningless but this form of the CREATE.FILE
command can be used to add a dictionary to a file previously created without one.
For example, a dictionary could later be added the PROGRAMS file created above
using

CREATE.FILE DICT PROGRAMS

If you are migrating to QM from another multivalue database product, you may be
familiar with multi-files. These can be considered as a set of identically structured
data files that share a common dictionary. A typical use of these might be to divide a
client database into business regions. QM has full support for multi-files but we will
not discuss them in detail in this course.

The DELETE.FILE command is used to delete a file. The syntax of this command is
DELETE.FILE name
Again, the name may be prefixed by DATA or DICT to delete just one part of the file.

Beware that once a file has been deleted, the only way to get it back is to restore it
from a backup.

The DELETE.FILE command will prompt for confirmation if the operating system
pathname of the file as recorded in the VOC 1s not the default that CREATE.FILE
would use. This helps to avoid accidental deletion of files in other accounts.

Directory Files

These are very simple. What the QM user sees as a database file is represented by
an operating system directory. The records within that file are represented by text
files in the directory.

QM Operating System
File Directory
Record Text file

This structure allows access to the records stored in the QM file from outside of QM
but will not give high performance because the process of searching a directory is
essentially a linear scan. Directory files are also widely used to store very large
records (perhaps over 100kb for a single record) as the operating system file
structures are optimised for very large sizes whereas the high performance hashed
files are optimised for smaller sizes. Storing very small records in directory files can
be inefficient as some operating systems allocate space in large chunks, perhaps as
large as 32kb, resulting in a record that is just a few bytes long requiring a large
amount of disk space.

2.12-4

22

Teach Yourself OpenQM

The text file created to represent each record will have the same name as the record
1d unless this contains characters that are not valid in operating system file names.
In this case, QM applies an automatic translation to yield a valid name. Note that on
Windows systems, file names are case insensitive and hence it is not possible to store
two records in a directory file with ids that differ only in casing.

Because directory files are frequently used to exchange data with other software that
may not understand the multivalue data model, data written to a directory file has
field marks replaced by newlines. The effect of this is that when the record is viewed
from outside QM with an operating system file editor, etc, each field appears as a
separate line of text. Lower level mark characters (value marks, subvalue marks and
text marks) are not affected because exporting multivalued data implies that the
software that will read it must understand multi-values. The reverse transformation
occurs when reading from a directory file, replacing newlines by field marks.

The potential problem with this data transformation is that records containing
binary data such as bit-mapped images (scanned documents, digital photographs,
etc) may be corrupted if they are stored in directory files. Such data may contain any
pattern of bytes. When the data is written out, all field marks are converted to
newlines. When read back in again, all newlines, including those that were in the
original data, are converted to field marks. Programmers can use the
MARK.MAPPING statement to suppress this mapping as described in the QMBasic
programming sections of this course.

Directory files are sometimes used to import or export very large records. These
might, perhaps, consist of many thousand of lines of text. Although a programmer
can treat the file as a database record and access the whole item in a single
operation, the QMBasic programming language allows the application to read or
write the item line by line. This is not possible with dynamic files and hence
programs written to use this feature will not work with dynamic files. There is more
about this in the section that discusses QMBasic sequential file processing.

Although they are very simple and do not offer high performance, all applications
include use of directory files. Some of the standard elements of QM use directory
files.

Dynamic Files

QM's dynamic files use a mathematical technique called hashing to optimise
performance. Although you do not need to understand this to use QM, a brief
description may be useful. You can skip this if it is not of interest.

To understand hashing, let's forget computers for a while and consider a simple
analogy.

Imagine that you walk into a library to find a book written by Fred Smith and that
the library (which hasn't quite caught up with technology) has a big wooden card
index cabinet. What do you do?

2.12-4

The QM File System 23

What you certainly don't do is to open the drawer labelled A, scan all the cards, move
to the drawer labelled B and so on. Clearly, you would go straight to the correct
drawer. In our computer model, we need a similar way to go directly to the small
part of the database where we expect the record to be stored.

The second problem is that, if you were to look in all the drawers, some would hold
many cards whilst others may be nearly empty. There aren't many authors with
names beginning with X, for example. This means that the card index cabinet
contains wasted space. In our computer model, we would like to minimise the wasted
space by ensuring that the distribution of records is as even as possible. It is
probably not acceptable to be told that the library has reduced wasted space by
sorting the author catalogue on the third letter of the author's name but we can do
whatever is convenient to us.

Finally, as the library grows, there will come a time when they purchase a new book,
type up the card, and find that it will not fit in the drawer. Just as a library is not
going to say that they cannot stock a book because the card won't fit in the drawer,
so 1n our computer system we need a way to store a record somewhere else if it won't
go where it should.

So, how does all this work in the computer model?

A hashed file is made up of a series of identically sized areas called groups,
analogous to the drawers of the card index cabinet. The number of groups in a file is
referred to as the modulus (or modulo). In QM, a group may be from 1 to 8kb in size
and there may be up to 2147483647 groups in a file (that's a maximum of 16
terabytes - far more than enough for even the most complex application).

A real data file would have many groups, perhaps thousands or even hundreds of
thousands. The purpose of dividing the file into groups is to allow the position at
which any particular record exists to be determined mathematically and hence
enabling the record to be read with the minimum of searching. For the purposes of
this explanation, consider a file that has a modulus of just 5.

A

A 4

Groups

Group size

}

Group 1 Group 2 Group 3 Group 4 Group 5

We wish to insert a new record with id 102. We need a system by which the record id
can be transformed into a group number and that will give a reasonably even
distribution of records across the file. Probably the simplest system would be to
divide the record id (102) by the modulus (5) and use the remainder from this
division plus one as the group number. Thus record 102 should be placed into group
3.

2.12-4

24

Teach Yourself OpenQM

Some time later, we come to read record 102. Applying the same transformation to
the record id, we know that this record belongs in group 3. We can read this one
group from the disk and search through it. If we find record 102, the job is done; if we
don't find the record, it is not in the file and we do not need to read any other groups.

If the group size can be made sufficiently small, we can read any record with a single
disk transfer. Clearly, it is not possible to get better performance than this. We have
the world's fastest file system. Unfortunately, in the real world things don't quite
work out this well but, as we will see, we should be able to get close to this
performance.

A real data file is likely to have non-numeric record ids so that the above
transformation is an over simplification of what QM actually does. Internally, QM
performs a calculation based on the ASCII values of the characters in the record id to
form a large number and then follows the procedure described above of dividing by
the modulus and using the remainder plus one as the group number.

If the hashing process is working well, the records should be distributed reasonably
evenly across the file resulting in a file something like that below where the grey

portion of each group represents the used space.

<
<&

\ 4

Groups

Group size

}

Group 1 Group 2 Group 3 Group 4 Group 5

There will always be some unevenness in the packing. Group 5 above is only about
half full while group 3 is nearly completely full. What happens if we try to add more
data to group 3 and it won't fit? It is not acceptable to say that we cannot store a
record because it won't fit where it should go. Instead, we add a new disk block to the
end of the full group.

ad
<%

v

Groups

Group size

!

Group 1 Group 2 Group 3 Group 4 Group 5
A

2.12-4

The QM File System 25

Group 3 in the diagram above is said to be overflowed. It is possible for the
overflow block itself to become overflowed. In such instances, the affected group is
said to be badly overflowed. This could progress to the point where a group has
many overflow blocks attached to it though this is unlikely.

Overflow should be minimised as it affects performance and also increases the risk of
file damage in the event of a system failure while writing a group back to disk.
Dynamic files are so called because there is a built in algorithm that adjusts the
modulus value to respond to changes in the volume of data stored in the file. The
effect of this is to keep overflow within an acceptable range without the need for any
system administration tools.

A newly created dynamic file normally has just one group. During the operation of
the file, QM tracks the file load value (the volume of data as a percentage of the
space allocated for groups, averaged over the whole file). When this value exceeds
the split load percentage, a new group is added. As a result of this, some data in the
file may need to be moved to the new group. Adding a group will have the effect of
decreasing the load value because the file size has increased.

Similarly, if the load value falls below the merge load percentage, the final group of
the file is removed, moving its data records into one of the remaining groups.

The effect of splitting and merging is to adjust the modulus in response to changes in
the volume of data such that the file remains reasonably tightly packed and hence
performs well.

A realistic dynamic file will still have overflow though the splitting and merging
process tends to minimise this. To allow for overflow in a file that must also be able
to adjust its modulus value, a dynamic file is represented by an operating system
directory containing two files that store the primary groups (%0) and overflow blocks
(%1) separately. The files are interlinked by pointers between the group buffers and
must always be backed up or restored together. There may be additional elements
(%2, %3, etc) if the file uses QM's alternate key index system.

When used to create a dynamic file, the CREATE.FILE command has several
optional parameters. It is usually sufficient to omit all of these, leaving everything at
its default value.

GROUP.SIZE n Specifies the group size in multiples of 1024 bytes.
Although this parameter may have any value between 1
and 8, best performance is obtained with 1, 2, 4 or 8.

MINIMUM.MODULUS n A dynamic file created with this parameter will never
shrink below the given number of groups. This
parameter can be useful to avoid excessive splits and
merges of a small file if records are added and deleted
frequently or to pre-allocate disk space.

SPLIT.LOAD n The split load percentage determines the load value at
which a new group is added to the file. The default value
of 80 works well for most files and should be changed
only with great care.

2.12-4

26

Teach Yourself OpenQM

MERGE.LOAD n The merge load percentage determines the load value at
which a group is removed from the file. The default
value of 50 works well for most files and should be
changed only with great care.

LARGE.RECORD n Records of more than this size (in bytes) are treated as a
special case and allocated their own private set of
overflow blocks. This parameter can improve
performance of files which contain predominately small
records but also have some larger records. It defaults to
80% of the group size.

If you are interested in more detail of how dynamic files work, there is a detailed
discussion in the Dynamic Files technical note on the OpenQM web site.

Case Sensitivity

With the exception of directory files on Windows, record ids in QM files are normally
case sensitive. The NO.CASE option to CREATE.FILE creates a file with case
insensitive record ids. One good example of use of case insensitive record ids is for
files that use email addresses as the record key. Most mail service providers treat
these as case insensitive and so we would need to do the same.

2.12-4

Editing Data 27

Editing Data

As we progress through the exercises in this course, you will need to edit records in
various files, sometimes to add new items, sometimes to modify what is already
there. QM includes several editing tools that can be used to create and modify data.
In this module we will look briefly at the more important features of the QM line
editor, ED, and the full screen editor SED. There is much more to learn about both of
these from the QM Reference Manual, especially SED which has many features
specifically aimed at application developers.

We need to create some test data that you can use while exploring the editors. To do
this, type
SORT NEWVOC CSV TO TEST FIRST 100

Do not worry about what this really does. Just accept that you now have a record
named TEST in a file named $ACC (which is actually your account directory viewed
as a directory file). You can use this record to try out the editor commands described
in this section. It does not matter how much you destroy this data because we will
not use it again elsewhere. You can always repeat the above command to recreate
the data later but it will ask for confirmation before overwriting the old version.

The ED Line Editor

In a line editor, the record being edited is processed in a line by line manner where
each line corresponds to a field in the data record. Although this is a fairly
antiquated style of editor, it turns out to be very appropriate for some of the things
that you will do with QM.

The early multivalue databases had only a line editor. ED is closely compatible with
its equivalents in some other products (and annoyingly not quite the same as some
others!). Programmers usually prefer a full screen editor such as SED.

The format of the ED command is
ED {DICT} file.name {record.id}

where

DICT indicates that records from the dictionary portion of the file are to
be edited.

file.name is the name of the file holding the record(s) to be edited.
record.id is the name of the record to be edited.

It is also possible to provide ED with a list of records to edit via the default select
list, a concept that we will discuss as part of the query processor. If no record.id is
specified and the default select list is active, this list is used to identify the records to
be edited. If no record.id is specified and the default select list is not active, the ED
command prompts for the record.id.

2.12-4

28

Teach Yourself OpenQM

A record.id of * on the command line will cause ED to select all records of the file and
edit each in turn.

QM includes a locking mechanism to prevent unwanted interactions between users.
The editor maintains an update lock on the record that is being edited so that any
other user attempting to modify the same record will either wait for the lock to be
released or report an error. Locking is discussed in detail as part of the programming
sections of this course.

If you are going to try out the editor commands as you read this section, type
ED $ACC TEST

The editor responds by showing you how many lines (fields) there are in the record
and then shows a command prompt.

Editor Commands

Each line entered from the keyboard contains one editor command. The command
names are case insensitive but qualifying information may be case sensitive
depending on the command and the current modes of the editor. Commands that
take qualifying information specifying their exact function can usually be repeated
by entering just the command name, carrying forward the qualifiers from the
previous use of the same command within the same editor session. We will see
examples of this as we begin to explore the editor command set.

The editor maintains the concept of a current position (line number) within the data.
On entry to the editor, this is above the first line. Commands are provided to move
the current position to a specific line or by searching. Many of the editor commands
will move the current position as a result of their action.

The editor operates in two modes; edit and input. Edit mode accepts commands to
move around within the text of the record, to make changes to the data or various
other actions. In input mode, new data is entered into the record. The editor numbers
lines from one and the line number is displayed as a four digit number followed by a
colon whenever lines are displayed or during input. The editor command prompt is
four hyphens followed by a colon. (If the record being edited has more than 9999
lines, the line number and prompt widths are adjusted to fit).

If a non-printing character is to be entered, it can be typed as “nnn where nnn is the
decimal value of the character within the ASCII character set. For example,
although there may be a key combination on your keyboard to send a value mark
character, this can always be entered as ~253. The only character that cannot be
entered in this way is the field mark (character 254) as the editor treats each field as
a separate line of text.

2.12-4

Editing Data 29

Positioning Commands
The commands listed below alter the position of the current line.

Entering a blank line at the command prompt advances the current position by one
line, displaying the newly selected line. If you are trying out the editor as you read
this, press the return key a few times and notice how this moves you down through
the data, showing each line as it goes. Work your way to the last line (the editor will
tell you when you get there) and notice that if you press the return key again, you
come back up to the top. Then try each of the commands below:

T
The T (top) command moves to before line 1. There is no current line after this
action.
B
The B (bottom) command moves to the last line of the record.
n
Entering a number at the command prompt positions the current line to line n.
+n
Moves the current line position forward by n lines.
-n
Moves the current line position backward by n lines.
L {string}
The L (locate) command moves forward to the next line containing string which
must be preceded by a single space. Any additional spaces will be treated as part
of the string to be located. The L command is case sensitive by default. Typing
CASE OFF
makes searches case insensitive for the remainder of the editing session. See the
description of ED in the QM Reference Manual to discover how to make the editor
case insensitive by default.
If string is omitted, the string used by the most recent L, command is used. If no L
command has been executed, the editor moves forward by one line.
Displaying Text

There are two main commands to display text:

P{n}
The P (print) command displays n lines starting at the current line, moving the
current line forward to the final displayed line. The value of n defaults to 23 on
first use of the P command and to the value of n for the most recently executed P
command thereafter. There must be no space between P and n.

2.12-4

30

Teach Yourself OpenQM

PP{n}
The PP (print position) command displays n lines surrounding the current line
position. The value of n defaults to 21 on first use of the PP command and to the
value of n for the most recently executed PP command thereafter. There must be
no space between PP and n.

Inserting Text

I {text}
The I (insert) command inserts text after the current line, making this the current
line. There must be a single space before text. Any additional spaces are treated
as part of the inserted text. To insert a blank line type I followed by a single
space.

If the I command is entered with no text and no space after the I, the editor
enters input mode. It will prompt for successive lines until a blank line is entered
at which point it returns to edit mode. Entering a line containing just a single
space inserts a blank line.

Deleting Lines

D{n}
The Dn (delete) command deletes n lines starting at the current line position. If n
is not specified, only the current line is deleted. Note carefully that the optional
numeric qualifier is the number of lines to delete, not the line to be deleted.

Editing the Current Line

A {string}
The A (append) command appends string to the current line. A single space must
separate string from the command. Any further spaces are treated as part of the
inserted text.

If string is omitted, the most recent A command is repeated.

Clold.string/new.stringl/{n}{G}
The C (change) command changes the first occurrence of old.string to new.string
in the current line. The delimiter around the strings may be any character other
than a letter, a digit, a space or a question mark.

The optional n component specifies that n lines starting at the current line are to
be changed.

G causes all occurrences of old.string in the line(s) being processed to be replaced.
Without G only the first occurrence on the line is changed.

2.12-4

Editing Data 31

Entering C with no strings repeats the last substitution.

R {text}
The R (replace) command replaces the current line with the specified text. There
must be a single space before text. Any additional spaces are treated as part of
the replacement text. Entering R with no further characters repeats the last
replacement operation.

Miscellaneous Commands

Toggles non-printing character expansion mode. When this mode is enabled,
non-printing characters are displayed as “nnn where nnn is the decimal
character number. A value mark, for example, would appear as ~253.

HELP topic
The HELP command displays a short description associated with the command
1dentified by topic.

OO0OPS
The OOPS command undoes the most recent function that modified the record in
the current editing session. It is only possible to go back one step in this way.

XEQ command
The XEQ command executes the specified command which may be any valid QM
command.

File Handling Commands and Leaving the Editor

FILE {{filename} record.id}
If no arguments are included, the FILE command (which may be abbreviated to
FI) writes the record being edited back to its original location.

If record.id is specified, the modified record is saved under the new name. A
confirmation prompt will be issued if a record of this name already exists.

If both filename and record.id are given, the record is saved to the specified file
and record. Again, a confirmation prompt will be issued if a record of this name
already exists.

After the record has been saved, the record update lock is released and the editor
either terminates, continues with the next record from a select list or prompts for
a new record id depending on the way in which it was entered.

QUIT
The QUIT command (which may be abbreviated to Q) releases the record update
lock and leaves the editor without saving any changes made to the record. A
confirmation prompt is issued if there are unsaved changes.

2.12-4

32

Teach Yourself OpenQM

The QUIT command terminates editing of the current record. If a select list is in
use, the editor will move on to the next record. Use the X command described
below to terminate the entire edit in this case.

The X command aborts an edit when a select list is in use without saving any
changes made to the record. A confirmation prompt is issued if there are unsaved
changes. Any further entries in the select list are discarded and the editor
terminates.

The editor contains many other commands that are not described in this short
overview. See the QM Reference Manual or the editor help text for details.

The SED Full Screen Editor

A full screen editor displays a page of data from the item being edited and allows the
user to move through it with the cursor keys or other control codes. The SED editor
is based on the industry standard EMACS editor but includes many extensions
tightly linked to the QM environment. This overview will introduce just a small
subset of the editor's features, sufficient to make a start using QM.

The format of the SED command is
SED {DICT} file_name {record.id}

where

DICT indicates that records from the dictionary portion of the file are to
be edited.

file.name is the name of the file holding the record(s) to be edited.
record.id is the name of the record to be edited.

SED behaves in exactly the same way as ED with regard to use of select lists or
prompting for record ids. The record(s) being processed are locked to prevent
unwanted interactions with other users.

To explore SED, edit the test record that you created at the start of this section:
SED $ACC TEST

The screen displayed by this command shows the start of the item being edited.
There is a two line status area at the bottom of the screen that identifies the record
being edited, its size, the current line and column positions and various editor status
flags.

To move around in the data, use the cursor keys. You can modify the data simply by
typing new characters to be inserted or using the delete or backspace keys to remove
data.

2.12-4

Editing Data 33

The editor has many special functions. Some are control key combinations entered by
holding the Ctrl key down while typing a letter (represented in the documentation
as, for example, Ctrl-G). Others are prefixed by use of the Escape key without
holding it down (represented as, for example, Esc-X) and some involve more complex
sequences such as Ctrl-X followed by C (represented as Ctrl-X C).

The only functions that you need to know to make a start with this editor are
Ctrl-X S Save the current data back to the file
Ctrl-X C Close (exit from) the editor

Rather than trying to learn all the SED functions and their key bindings in one go,
try to learn a few at a time and get used to using them. Other useful ones to learn
soon are

Ctrl-A Move the the start of the line

Ctrl-E Move to the end of the line

Ctrl-G Cancel a partially completed function key entry

Ctrl-V Move down one screen

Esc-V Move up one screen

Esc-< Move to the top of the data

Esc-> Move to the bottom of the data

There are many powerful features to learn about later by reading the relevant
section of the QM Reference Manual. SED has some really good cut and paste
features for rearranging data and can work on multiple records in a single editing
session.

2.12-4

34

Teach Yourself OpenQM

The VOC File

The VOC file is the vocabulary of words and symbols that can be used in a QM
command. Every account has a VOC file, indeed it is the presence of a VOC file in a
directory that makes the directory into a QM account. If you are migrating to QM
from a Pick style multivalue environment, the VOC is broadly similar in purpose to
the MD (master dictionary) file though its content is very different. The name MD
can be used as a synonym for VOC in QM.

The VOC of a newly created account contains around 500 items. This will expand
rapidly during the development of an application.

Records in the VOC file serve many purposes. The function of each record is
determined by a type code in the first field. The valid VOC record types are:

Type Function

D Defines a data field. More usually found in dictionaries, the VOC may
contain definitions for fields common to many files.

F Defines the operating system pathnames of a QM file.

=

Defines a keyword which controls some action of a command.

M A menu definition. Although these can appear in the VOC, they are
usually located elsewhere and accessed via an R-type VOC item.

PA A paragraph. This is a sequence of stored commands as a script that can
be executed by entering its name at the command prompt.

PH A phrase. This is part of a query processor command.

PQ A Proc program. These are supported for compatibility with other
database systems and their use is discouraged in QM.

Q A pointer to a file in another account.

R A remote item. This points to a VOC style record stored in some other file.
The addressed record must be of an executable type.

S A sentence. This is a single command stored to allow its execution by
typing just its name.

\Y A verb. This is a QM command. Users can add verbs of their own to the
command set in various ways.

X A miscellaneous storage item. X-type records can be used to store any
data.

The type code in field 1 of a VOC entry (line 1 when viewed with the editor) may
contain comment text after the type code. This is useful to explain what the item
does or to record who owns a sentence or paragraph entry. There does not need to be
a space between the type code and the comment text.

This section looks only at the VOC record types that users are likely to create or
amend; F, PA, PH, Q, R, S and X. D-type items are discussed in the section on

dictionaries. For other record types, see the QM Reference Manual.

Because users are likely to generate VOC items that are specific to their own

2.12-4

The VOC File 35

activities, particularly PA and S type records, QM provides the concept of a personal
VOC which will be examined if the item cannot be found in the main vocabulary. The
personal VOC is normally private to an individual user within the account but can be
shared between users or accounts as desired. Use of the personal VOC avoids the
need to have potentially complex naming conventions for personal items in large
systems. The personal VOC is fully described in the QM Reference Manual but not
mentioned further here.

File Entries, Types F and Q

All files accessed from your account must be defined in the VOC file. There are two
ways to do this.

The F-type VOC entry maps a QM file name to its underlying operating system
pathnames. The basic format of an F-type entry is:

1 F
2 Data file pathname

3 Dictionary pathname

It is very useful to add a description of the file's role in the application to the end of
the first field of this VOC entry.

The F-type VOC entry is created automatically by the CREATE.FILE command.

A file may be created with only a data portion or, more rarely, only a dictionary
portion. In this case, the pathname for the absent portion is left blank.

The pathnames may be relative to the account directory or given as a full pathname.

Using the default naming for the operating system files, creating a QM file named
SALES would result in a VOC entry as below:
SALES F

SALES
SALES.DIC

Because all application software and commands use the VOC entry to locate the file,
should we choose to move the file to a new location on the disk, we need only change
pathname stored in the VOC entry. Nothing within the application itself is affected.

The pathnames in an F-type VOC entry may be prefixed by one of a set of special
constructs to provide flexibility. Each of these will be replaced as shown below:
@QMSYS The pathname of the QMSYS account
@TMP The pathname of the QM temporary directory
@HOME The user's home directory pathname
@DRIVE The QMSYS account drive letter (Windows only)

For compatibility with other multivalue environments, QM supports the concept of
multifiles which may be considered as a file that has subfiles, each containing data

2.12-4

36

Teach Yourself OpenQM

of the same type and sharing a common dictionary. A typical use of a multifile might
be to divide a customers file into parts to correspond to business regions. The name
used to reference each part is formed from the file name and subfile name separated
by a comma, for example

CUSTOMERS ,NORTH

The VOC entry for a multifile is extended to become

F
Data file pathnames (multivalued)

Dictionary pathname

N I R

Subfile names (multivalued)

There should only be one F-type entry for any given file. If we wish to access a file
from another account we use a Q type VOC entry to do this. A Q-type VOC entry,
often called a Q pointer, points to an F-type entry in another VOC file.

Consider a system with a sales processing account and a stock control account. The
STOCK file might be required from both applications. Although this could be done
with an F-type VOC entry in each account, this is the wrong way to do it.

Instead, one account uses a Q-type VOC entry to access the file via the other
account's VOC. This ensures that if we later need to move the file there is only one
VOC entry to modify and also gives a sense of ownership of the file. The account with
the F-type entry owns the file. The account with the Q-type entry is borrowing the
file.

The format of a Q-type VOC entry is

Q

2 Target account name or pathname

3 VOC entry name of file to access

Field 2 may either contain the actual pathname of the target account or the name of
this account as defined in the central account register.

Although there is a performance penalty in this indirect access to the file, it is
usually insignificant. It is even possible to have a Q pointer that points to a further Q
pointer and ultimately leads to an F-type VOC entry though this is not
recommended.

QM also includes a mechanism by which it is possible to access files on another
server running its own QM system. Although this could be done simply by
referencing a file pathname that referred to the remote system, this would not
provide any concurrency control to ensure that conflicts from simultaneous updates
could not occur. Instead, remote files on other QM servers should be accessed using
QMNet, a built-in component of QM that provides full concurrency control over a

2.12-4

The VOC File 37

network.

To create a reference to a remote file, the remote server is defined using the
SET.SERVER command and the Q-type VOC entry is extended to include the server
name in field 4. QMNet is not discussed further in this course but is fully described
in the @M Reference Manual.

QM provides three commands to list the F-type VOC entries:

LISTF Lists all F-type entries
LISTFL Lists only local files (those in our account directory)
LISTFR Lists only remote files (those not in our account directory)

Extended syntax

Normally, QM commands that reference files use a file name that corresponds to an
F or Q-type VOC entry which, in turn, references the actual operating system file to
be accessed. There are three special extended syntaxes for filenames that allow
access to files without needing a VOC entry. Use of these is controlled by the
FILERULE configuration option and may have been disabled by your system
administrator as they have a potential impact on security.

The three extended syntaxes are:

Implicit Q-pointer account:file
Implicit QMNet pointer server:account:file
Pathname PATH:pathname

Note that in the final form, depending on context, Windows users may need to use
forward slash characters (/) as directory delimiters or enclose the pathname in quotes
because the backslash (\) is reserved as a string quote.

Sentence Entries, Type S

A sentence is a complete QM command. Sentences may be stored in the VOC file so
that they can be executed by typing just the sentence name.

The format of a sentence VOC entry is

1 S

2 Sentence

Long sentences may be split into multiple lines for ease of maintenance by ending
each line other than the last with an underscore character. When executed, the lines
are merged together, replacing the underscore with a single space. Don't worry yet
about what this command actually does but an example of use of continuation lines
would be:

2.12-4

38

Teach Yourself OpenQM

S

LIST SALES

BY CUST

BREAK.ON ""VB"" CUST_

TOTAL SALE.VALUE_

HEADING "Orders for customer "B""

For many of the exercises and examples in this course we will use the demonstration
database STOCK file. To view the content of this file we could type
LIST STOCK

If we are doing this continually, it might be worth setting up a VOC sentence with a
short name to do the listing for us. This might appear as
LS S
LIST STOCK

Although you could create this VOC item using the ED or SED editors, the command
stack editor provides an easy way to add a sentence to your VOC. First execute the
command that you want to save and check that it works correctly.

LIST STOCK

Then type
.S LS

(note the leading period) to save the most recent command (LIST STOCK) as a
sentence named LS.

Check that this has work by typing LS at the command prompt. You should see
exactly the same listing of the STOCK file as when you typed the full LIST
command.

When we execute a sentence in this way we can add further items to the end of the
sentence by typing them after the sentence name. Try typing
LS WITH PRICE > 5

We can use the LISTS command to list the sentences in our VOC.

2.12-4

The VOC File 39

Paragraph Entries, Type PA

A paragraph is a stored sequence of commands that can be executed by typing just
the paragraph name. Paragraphs are very useful for automating tasks that you
perform frequently.

The format of a paragraph VOC entry is

PA
First sentence

Second sentence

N R

etc....

Long sentences within a paragraph may be split into multiple lines for ease of
maintenance by ending each line other than the last with an underscore character.
When executed, the lines are merged together, replacing the underscore with a single
space.

A paragraph starts at the first sentence and executes each sentence in turn until it
reaches the end of the paragraph. There are constructs discussed in a later module to
add conditional execution, loops, prompting for input, etc to a paragraph.

There are four reserved paragraph names that have specific purposes in QM. All of
these are optional.

LOGIN When you first enter QM or when you use the LOGTO command to
move from one account to another, QM looks for a paragraph (or
other executable VOC entry type) named LOGIN. If this is present,
it is executed. The LOGIN paragraph is typically used to initialise
the user's environment, performing security checks, setting up
terminal types, printers, etc. It usually also takes the user into the
application so that he never sees the QM command prompt. The
break key is disabled until completion of this paragraph unless
enabled by use of the BREAK command. The LOGIN paragraph is
run for all QM sessions, including phantoms and QMClient
connections.

ON.EXIT This paragraph is executed, if present, when you leave QM. It could
be used to tidy up work files used by an application or for logging.

ON.LOGTO This paragraph is executed on use of the LOGTO command before
leaving the previous account.

ON.ABORT An abort is an event that occurs when things go wrong in your
application. Aborts can be generated by QM itself, by statements
within the application software to handle catastrophic disaster or
by the user selecting the abort action from the break key options.
When an abort occurs, QM discards all programs, sentences,
paragraphs, menus, etc that are active in your session and returns

2.12-4

40

Teach Yourself OpenQM

to the command prompt. Just before it displays the prompt, it
checks for a paragraph named ON.ABORT and, if present, runs it.
The purpose of this paragraph is to ensure that the user does not
end up at a QM command prompt if the application fails. Very often
this paragraph simply logs the event and terminates the session.

There is a further reserved paragraph name in the QMSYS account. Sometimes,
there may be other initialisation tasks that need to be run on initial entry to QM,
regardless of which account we are going into. This can be achieved by creating a
paragraph named MASTER.LOGIN in the VOC of the QMSYS account. This
paragraph, if present, runs before the LOGIN paragraph but is run only once, not on
use of LOGTO. The MASTER.LOGIN paragraph is run for all QM sessions except
QMClient.

We can use the LISTPA command to list the paragraphs in our VOC.

Phrase Entries, Type PH

A phrase is part of a query processor sentence. They are used as short forms or to
provide synonyms.

The format of a phrase VOC entry is

1 PH

2 Expansion

The phrase expansion may be split into multiple lines for ease of maintenance by
ending each line other than the last with an underscore character.

As a simple example of use of PH records to provide synonyms, the VOC includes a
phrase named WITHOUT. Use the CT command to look at this:
CT VOC WITHOUT

You should see that this phrase expands to
WITH NO

allowing the user to use the single word WITHOUT as a synonym for WITH NO.

We can use the LISTPH command to list the phrases in our VOC.

2.12-4

The VOC File 41

Remote Entries, Type R

Remote VOC entries are pointers to items that would normally be found in the VOC
file but have been placed elsewhere. There are several reasons to use remote VOC
entries:
e To move a large paragraph out of the VOC file to avoid very large VOC
records.
e To access a common item from several accounts without duplicating it in each
VOC.
e To enable use of security features.

The general form of an R type VOC entry is

R
Name of file holding remote item

Record name of remote item

N I R

Security subroutine (optional)

Some standard QM commands are implemented using remote pointers to a file
named QM.VOCLIB which is in the System Administrator's account. For example,
the LISTF, LISTS, LISTPH (etc) commands that we have met in this section work in
this way

The optional security subroutine named in field 4 of an R type VOC entry enables
verification that the user is to be allowed to execute the command. When a user
attempts to execute a command that is accessed via an R type VOC entry, this
subroutine is called. It can perform whatever processing the application designer
wishes and returns a yes/no response. If the subroutine indicates that the command
is valid, QM will execute the remote item. If it indicates that the command is to be
disallowed, QM displays an error message.

Although V-type VOC records (verbs) are not discussed in this course because they
are rarely created directly by a user, QM also allows security subroutines to be
attached directly to V-type entries, removing the need for an intermediate R-type
item as is required in other multivalue environments.

Full details of how to write a security subroutine can be found in the QM Reference
Manual.

We can use the LISTR command to list the remote items in our VOC.

2.12-4

42

Teach Yourself OpenQM

Miscellaneous Entries, Type X

X type VOC entries can be used to store whatever the application designer wishes.

They might, for example, hold the version number of the application or control
information that the application uses to determine its behaviour.

The general form of an X type VOC entry is

1 X
2+ Anything

2.12-4

Dictionaries 43

Dictionaries

Every QM file normally has an associated dictionary which describes the structure of
the data records stored in the file and the default way in which the query processor
should present the data in a report.

The dictionary contains records of various types, each identified by a code in the first
field of the entry. The dictionary record types are:

Type Function

D A D-type entry defines a data field present in the file and specifies its
location and how it is to be displayed in a report.

I An I-type entry (often referred to as a virtual attribute) defines a value
that can be calculated from the data in the file and specifies how it is to be
displayed in a report. The general concept of I-type items is included in
this section. There is a whole module on virtual attributes later.

L An L-type record defines a link to another related file. Use of link records
can significantly reduce the number of I-type records needed in a
dictionary but they can also weaken security.

A/S A and S-type entries are provided for compatibility with Pick and Reality
systems and provide many of the same features as D and I-type records.
These are discussed in a later section.

PH A PH-type entry is a phrase which can be substituted into a query
processing sentence. There are some reserved phrases which control the
default actions of the query processor.

X An X-type entry is a miscellaneous storage item and may be used for any
purpose.

D-Type Dictionary Records

A dictionary normally contains a D-type record to describe each field of the database
records. A single field may be described by multiple dictionary records to provide
alternative ways to view the data. Which record is used by the query processor
depends on how the query is phrased.

Consider our SALES file. Each field of the data record has a corresponding dictionary
record to describe it. There is also a dictionary record to describe the record id. The
name of the dictionary record is the name by which the query processor will refer to
the field.

D-type dictionary records normally consist of 7 fields. The table below shows the
dictionary definitions of the first few fields of the SALES record. The first column
shows the conventional name of the dictionary field, the second column is the
dictionary field number and the remaining columns show what the dictionary entry
would contain to describe the record id and the first five data fields.

2.12-4

44

Teach Yourself OpenQM

@ID |DATE CUST ITEM QTY PRICE
Type 1 |D D D D D D
Loc 2 10 1 2 3 4 5
Conv 3 D2DMYL[,A3] MD2
Name 4 Date Cust Ttem 'RX'Qty |'"RX'Price
Format |5 [5R 9R 4R 3R 4R 6R
SM 6 |S S S M M M
Assoc 7 LINE LINE LINE

The role of each dictionary field is described below:

Type

Loc

Conv

Name

Format

SM

The type field contains the dictionary entry type, D for a description of
a field within the database record. The type code may optionally be
followed by descriptive text.

The location field contains the position of the field within the database
record. The record id is shown as field zero in dictionaries.

Data is sometimes stored in an internal format. The conversion code
describes the conversion to be performed before the data is displayed
in a report. Conversion codes are discussed in detail later. In the
SALES file, the DATE field has a conversion code of D2DMYL[,A3]
which tells the system that this is a date and the form in which it is to
be displayed. We will look at how this code works in the next section.

The name field contains the default column heading to be used in
reports. The headings for the QTY and PRICE fields include some
special control tokens. These must appear at the start of the text and
are enclosed in single quotes. The R token says that the heading text is
to be right justified in the column. When the text is narrower than the
column, periods (.) are normally output in the unused positions. The X
control token causes the unused positions to be space filled. A
multi-line column heading can be created by making the name text
multivalued. Each value appears as a separate line.

The format field specifies the number of columns to be used to show
this data and how the data is to be aligned within the given width.
Format codes are discussed in detail later. In all the examples above,
the numeric part is the number of columns to be used and the R says
that the data is to be right justified within this width.

This flag indicates whether the field is always single valued (S) or may
be multi-valued (M). In our SALES file the date and customer number
fields are always single valued but a customer can order multiple
items. You may wonder why we need this flag as a single valued field
is just like a multivalued field with only one value. The SM flag has an
impact on how conversion codes and format codes are applied. Very
little goes wrong if it is set incorrectly but there are occasional

2.12-4

Dictionaries 45

examples where it is important.

Assoc Used only with multivalued fields, this field shows the relationship
between associated multivalued fields. Any fields that have the same
word in this dictionary field are associated together. There is a further
step in defining an association described below. In our SALES file, the
association name LINE has been used to link the fields that form a
line of the order.

Use the command
LIST DICT SALES

to display the dictionary of the SALES file and see how this relates to the chart
above. There are actually more D-type items than appear in the table above. We will
meet these fields in later sections. There are also some additional items of other
types that we will discuss later.

Notice how there are two entries describing the record id. The @ID entry is inserted
by the CREATE.FILE command and may be modified but must not be removed. In
this dictionary we also have an entry named SALE as an alternative view of the
record id with a more useful name. This technique is very common.

There are also two items for field 1, DATE and MONTH. These have different
conversion codes that would result in the date being displayed in a different form.

Associations

An association is a set of two or more multivalued fields that are related such that
the values are inter-dependent. For example, our SALES file contains a multivalued
list of products, a corresponding multivalued list of quantities and a further
corresponding multivalued list of prices. A realistic data file may contain several
associated sets of fields. Out SALES file actually has two.

The query processor and the MODIFY data entry utility need to know about this
relationship. An association is defined by giving it a name which appears in field 7 of
the dictionary entry of each field in the association. There is also a phrase record
with this name which contains a list of the component fields. In our SALES
dictionary, we have a phrase record named LINE that references the three fields in
this association:

2.12-4

Teach Yourself OpenQM

DATE CUST ITEM QTY PRICE

04 Jun 07 1000 001 2 1.70
003 1 1.70
I. D D D
2: 3 4 5
3: MD2
4: Item Qty Price
50 3R 4R 6R
6: M M M
7. LINE LINE LINE

ey

ITEM QTY PRICE

Thus, starting from any one element of the association, its dictionary entry can be
used to find the phrase record which, in turn, allows us to find all the members of the
association.

2.12-4

Dictionaries 47

I-Type Dictionary Records

An I-type dictionary record defines a calculation based on data on the data file
records. Once an I-type item is defined, it can be referenced in query processor
sentences exactly as though it was a real data field. I-type items are sometimes
known as virtual attributes, a term which emphasises the fact that their values are
not physically stored in the database.

An I-type dictionary item differs from a D-type item only in that field 1 contains the
type code I and field 2 contains the actual calculation to be performed. The
remaining fields are as for a D-type entry.

As an example, examine the dictionary of the STOCK file by typing
LIST DICT STOCK

The PRICE field holds the selling price for the item. The QTY field holds the number
of the item we have in stock. If we wanted to calculate the value of the stock of each
item type, we could construct an I-type dictionary record that multiplies these two
values together. This dictionary record would be

VALUE
Type 1 |I
Loc 2 |PRICE * QTY
Conv 3 |MD2
Name 4 |Stock Value
Format |5 |6R
SM 6 |S
Assoc 7

We will create this I-type record and many others in a later module where we discuss
I-type records in detail.

L-Type Dictionary Records
An L-type record defines the relationship between two files.

Consider our SALES file. The CUST field contains the customer number. This value
1s also the record id to the CUSTOMERS file record that holds the details of the
customer. Therefore, we could read a SALES record and use the customer number
stored in it to find the related CUSTOMERS record. A similar relationship applies to
the ITEM field and the STOCK file except that a single order may reference multiple
stock items.

2.12-4

48

Teach Yourself OpenQM

SALES
1 2 3 4 3
DATE CUST ITEM QT PRICE
STOCK
1 2 3
DESCR QTY PRICE
CUSTOMERS

1 2 3

3
NAME ADDR TEL.NO

We might want to use the query processor to produce a report that shows the orders
with their corresponding customer numbers. We could do this by adding an I-type
record that uses a special function called TRANS() that we will meet in the I-types
section. This function follows the link to another related file and returns a specific
field from it. If we also wanted to be able to show the customer address or telephone
number in a report of the SALES file, we would need a further I-type record for each
of these.

QM provides a simpler way to do this. Instead of having a separate I-type for each
item we want to be able to report from the second file, we have a single link record
that defines the relationship between the files and then use a special syntax in our
queries to refer to the data in that second file.

CUSTOMERS
Type 1 |L
Link 2 |ITEM

In this example, we have created a link record named CUSTOMERS to define the
relationship with the CUSTOMERS file. It makes sense to use the name of the
linked file as the id of the link record unless it causes a clash with other dictionary
items.

Field 2 of the link record contains an expression that evaluates to the appropriate
record id in the linked file. This is constructed in exactly the same way as an I-type
expression. In this simple example, it is simply the name of the field (ITEM) that
contains the record id of the linked file.

Having created the link record, we can now reference any field in the linked file in a
query by using a special syntax of

linkname%field

where linkname is the name of the link record and field is the name of the field to be
retrieved. For example, we could use

CUSTOMERS%NAME

to get the customer name. Although this mechanism can result in considerable

2.12-4

Dictionaries 49

simplification of dictionaries (we could access any of the customer fields without
needing a separate I-type for each), it potentially weakens system security. Without
link records, a user who can enter ad hoc queries can only access fields in the second
file for which we have provided an I-type. With link records, all fields can be
referenced. The data encryption mechanisms of QM could be used to hide restricted
data.

Before we move on, you may be wondering why we have chosen to store the price in
the SALES record when we could get it by following the link to the corresponding
STOCK record. If we did this, any future change of price would also apply to past
orders. By copying the price into the sales record when the order is placed, we fix the
price at time of order.

PH-Type Dictionary Records

A phrase record defines a short form for some part of a query sentence. Where the
query processor finds the name of a phrase in the query sentence it replaces the
phrase name with the content of field 2 of the phrase entry. Long phrases may be
split over several lines to ease maintenance by ending each line except the last with
an underscore.

There are several optional phrases that are used by the query processor to control its
behaviour. These will be discussed in a later section.

X-Type Dictionary Records

X-type dictionary records are for storage of miscellaneous data in any way that the
application designer might find useful.

One common use 1s to store the id of the next record to be created in a file with
sequentially allocated numeric record ids.

2.12-4

50

Teach Yourself OpenQM

Conversion and Formatting

Conversion Codes

Data is not always stored on the database files in the same form that we would use
to display it to a user. QM provides a wide range of conversion codes to transform
data from its internal form to the external form when generating a report. The
reverse transformation would be performed by data entry programs and is discussed
in the programming sections of this course.

In this section we will examine the three most commonly used conversion codes;
dates, times and decimal values. The other conversion codes can be found in the user
documentation. It is also possible to add your own conversion codes to QM.

Date Conversion

Dates are stored internally as a number of days from 31 December 1967, that date
being day zero. All later dates are positive numbers; all earlier dates are negative
numbers.

By storing dates in this form, date manipulation becomes very easy. To work out the
due date of an invoice, for example, we simply add the payment period to the issue
date without any need to worry about month ends, etc. This date format also means
that QM was unaffected by the "millennium bug" (1 January 2000 was day 11689).
We had our own date crisis on 18 May 1995 when the internal representation of the
date became five digits. Many application designers had assumed that dates were
always four digits.

Of course, the customer receiving the invoice does not want to see the date as a day
number. We need some system to convert the internal date to the conventional
written form of the date.

The simplest date conversion code is just D. This applies a default conversion which
can be altered using the DATE.FORMAT command. Converting dates in this simple
way is not recommended because any change to the default settings of the system
will affect the application output. Instead, most dictionaries use an extended form of
the date conversion code to specify precisely what format they wish to use.

D {n} {s} {fmt} {E} {L;}
where
n is the number of digits to appear in the year. If omitted, four digit year

numbers are used.

s is a non-numeric separator to be used between the day, month and year.

2.12-4

Conversion and Formatting 51

fmt

Examples

Determines the components to be included in the converted date and the
order in which they are to appear. If both s and fmt are omitted, the date
is converted in the form 19 JUL 2000.

The fmt specification may include the following codes:

D Day of month

DO Ordinal day of month (1st, 2nd, 3rd, etc)

J Day number in year (Julian date, 1 to 366)

M Month number

MA Month name

Q Quarter in year (1 to 4)

W Day of week as a number (Monday = 1, Sunday = 7)

WA Day of week as a name

WI ISO week number

Y Year number

YI ISO year number. This is not always the same as the calendar
year as a date may be in the last week of the previous ISO year
or in the first week of the following ISO year.

The fmt may be followed by qualifying information enclosed in square
brackets with one comma separated qualifier for each component in the
fmt. These qualifiers may contain:

{Z}n Number of digits for a numeric component, number of
characters for a non-numeric component. If Z is present, leading
zeros are suppressed.

A{n} Requests alphabetic form of the item. n specifies the field width.

Toggles the date format between day/month/year and month/day/year.

Retains lowercase characters is day and month names. If not present, the
name is converted to uppercase.

All of the following are conversions of internal date 11879. For cases where there is
any difference, the result is shown for both settings of the QM DATE.FORMAT

option.

Code

D

D2

D4

D/

D2/
D4/E
D4/DMY
DWA

DATE.FORMAT

Off On

09 JUL 2000

09 JUL 00

09 JUL 2000

07/09/2000 09/07/2000
07/09/00 09/07/00
09/07/2000 07/09/2000
09/7/2000

SUNDAY

2.12-4

52

Teach Yourself OpenQM

D/WADMYL Sunday 09/7/2000
DJY 191 2000

DQ 3

DDMYL[,A3] 09 Jul 2000
DDMYL[Z,A] 9 July 2000

DYA DRAGON

An extended form of the DATE command can be used to translate a date between
internal and external form from the command prompt. For example,

DATE 21 Apr 08 translates the supplied date to internal form
DATE 14408 translates the supplied date to external form
DATE INTERNAL displays the current date in internal form

Time Conversion

Times are stored internally as a number of seconds since midnight. The time
conversion code converts a time from its internal representation to hours, minutes
and (optionally) seconds.

The full format of this conversion code is
MT{H}{S}{c}
where

H specifies that the time is to appear in 12-hour format with either am or pm
appended. If H is not specified, 24-hour conversion is used.

S specifies that the converted time is to include the seconds component.

¢ 1s the character to separate the hours, minutes and seconds fields. If omitted,
a colon 1is used.

Decimal Value Conversion

Decimal values such as currencies and other weights and measures are normally
stored internally scaled by some number of decimal places to remove the decimal
point. For example, our STOCK file stores the prices in cents rather than in dollars
(or pence instead of pounds, etc).

We scale numbers in this way for three reasons:

Firstly, removal of the decimal point reduces the storage space required. When this
style of database was first created, disks were extremely expensive and this was an
important point. With current storage device prices, this reason has largely gone

away.

Secondly, by scaling monetary values such as dollars to cents often results in values

2.12-4

Conversion and Formatting 53

which are whole numbers. The computer hardware is considerably faster performing
whole number (integer) arithmetic than decimal (floating point) arithmetic.

Thirdly, just as there are numbers that we cannot write accurately in decimal
notation (e.g. one third), so there are numbers that cannot be represented accurately
in the binary form used inside computers. Scaling the number may remove the
rounding error and preserve accuracy through calculations.

The masked decimal conversion code, MD, converts numbers by applying scaling and
also specifies the use of currency symbols, negative value representation, etc.

The format of the major features of this conversion code is
MON{F}{, HSHmodifier}{sHZH{TH{x{c}}
where

n is a digit in the range 0 to 9 specifying the number of digits to appear
to the right of the decimal point. Rounding occurs on output conversion
in the fractional part and, if the result is an integer, the decimal point
does not appear.

f is a digit in the range 0 to 9 specifying the position of the implied
decimal point in the data to be converted. For example, if the value
supplied to an output conversion is 12345 and fis 2, the result is
123.45. Conversely, if the value supplied to an input conversion is
123.45 and f1is 2, the result is 12345. If omitted, f defaults to the same
value as n.

specifies that commas are to be inserted as the thousands delimiter.

$ specifies that a dollar sign should be used as a prefix to the converted
data on output conversion and may be present on input conversion.
Other currency symbols are handled by use of the modifier element
below.

modifier consists of up to four comma separated components enclosed in square
brackets which allow specification of a prefix, alternative thousands
separator, alternative decimal separator and suffix.

s specifies the handling of the numeric sign of the value.
+ places a + or - sign to the right of the converted data.
places a - sign to the right of negative values or a space to the
right of positive values.
< encloses negative values in angle brackets. A positive value has
a space placed to its right.
< encloses negative values in round brackets. A positive value has
a space placed to its right.
C places the letters CR to the right of negative values or two
spaces to the right of positive values.
D places the letters DB to the right of negative values or two
spaces to the right of positive values.
Input conversion accepts any of these representations of a negative
value regardless of the actual conversion code used.

T specifies that the value is to be truncated rather than rounded to the
required number of decimal places.

2.12-4

54

Teach Yourself OpenQM

V/ specifies that a zero value should be represented by a null string on

output conversion.

x{c} specifies that the result of an output conversion is to be a field of x

characters. The optional ¢ component is the character to be used to fill
unused positions and defaults to a space if omitted. The value of x may
be one or two digits.

Examples

The table below shows various conversion codes used with the value 123456789.

Conversion code Result

MD2 1234567.89
MD25 1234.57

MD25T 1234.56
MD2['DM', .\, "] DM1.234.567,89
MD2[,,,'’kg'] 1234567.89kg

Format Codes

Format codes determine the format in which the converted data is output by the

query processor.

The full form of a format code is

{field.width} {fill.char} justification {n{m}} {conv} {mask}

where

field.width 1is the width of the field into which the data is to be formatted. If

field.width is omitted, mask must be specified.

fill.char is the character to be used to expand the string to field.width

characters. If omitted, a space is used by default. Where fill.char is

a digit, it must be enclosed in single or double quotes.

justification indicates the justification mode to be applied. It takes one of the
following values:

C

specifies centered justification. The data is centered in a

field of field.width characters, additional fill.char
characters being added to either side if the data is
shorter than field.width. If the data is longer than
field.width, text marks are inserted at intervals of
field.width from the start of the data.

2.12-4

Conversion and Formatting 55

conv

specifies left justification. The data is left aligned in a
field of field.width characters, additional fill.char
characters being appended if the data is shorter than
field.width. If the data is longer than field.width, text
marks are inserted at intervals of field.width from the
start of the data.

specifies right justification. The data is right aligned in a
field of field.width characters, additional fill.char
characters being inserted at the start if the data is
shorter than field.width. If the data is longer than
field.width, text marks are inserted at intervals of
field.width from the start of the data.

specifies text justification. Text marks are inserted to
break the data into fragments of no more than
field.width characters, aligning breaks onto the positions
of spaces in the data. Where there is no suitable space at
which to break the data, the text mark is inserted
field.width characters after the last break position. The
final fragment is padded using fill.char to be field.width
characters in length.

When the data is displayed, output moves to a new line
where a text mark is present in the formatted data.

specifies left justification and is treated identically to the
L code by QMBasic. Within the query processor, data
formatted with this code that is wider than field.width is
not wrapped over multiple lines but extends into the
space to its right, possibly overwriting whitespace in
later columns.

specifies the number of decimal places to appear in the result when
formatting numeric data. The value is rounded in the normal
manner. If n is zero, the value is rounded to an integer.

specifies the scaling factor to be applied. The value being formatted
is scaled by moving the decimal point m - p places to the left,
where p is the current precision value.

is any meaningful combination of the following codes:

$

specifies that the national currency symbol should be used as a
prefix to the converted data on output conversion and may be
present on input conversion. The default currency symbol is a
dollar sign but this may be changed by use of the NLS
command or the SETNLS QMBasic statement.

indicates that the national language convention thousands
delimiter is to be inserted every third digit to the left of the
decimal point when converting numeric data. This delimiter

2.12-4

56

Teach Yourself OpenQM

mask

defaults to a comma.

B appends db to negative numbers, two spaces to positive
numbers. Use the CRDB.UPCASE keyword of the OPTION
command to change this to DB.

C appends cr to negative numbers, two spaces to positive
numbers. Use the CRDB.UPCASE keyword of the OPTION
command to change this to CR.

D appends db to positive numbers, two spaces to negative
numbers. Use the CRDB.UPCASE keyword of the OPTION
command to change this to DB.

E encloses negative number in angle brackets (<...>). Positive
numbers are followed by a single space.

M appends a minus sign to negative numbers.
N suppresses any sign indicator.

Z indicates that a value of zero should be represented by a null
string.

specifies a mask to be used to format the data. If omitted,
field.width must be specified. Both can be used together.

The mask consists of a character string containing #, * or %
characters and other characters. Each #, * or % is substituted by
one character from the source data. Other characters are copied
directly to the result string. Multiple #, * or % characters may be
represented by a single #, * or % followed by a number indicating
the number of characters to be inserted. Characters having special
meaning within the format string may be prefixed by a backslash
(\) to indicate that they are to be treated as text.

The value 1234567 with a format specification of 9L#2-#3-#2 would
return 1234567.

Where the mask specifies more characters than in the data being
converted, positions corresponding to # characters in the mask are
replaced by the fill.char, positions corresponding to * characters in
the mask are replaced by asterisks and positions corresponding to
% characters in the mask are replaced by zeros. If the data is left
aligned, the padding is inserted in the rightmost positions. If the
data is right aligned, the padding is inserted in the leftmost
positions.

If the mask specifies fewer characters than in the data being
converted, part of the source data will be lost. A left aligned format
will truncate the source data and a right aligned format will lose
data from the start of the source.

2.12-4

Conversion and Formatting 57

Data formatting attempts to handle the data as a number if the decimal places,
currency symbol, comma insertion or null zero features are included in the format
specification. If these features are all absent, or if the data cannot be converted to a
number, it is handled as a string. The difference in handling is relevant when
processing data such as a string with leading zeros.

Format Code Examples

The following table shows some uses of format codes.

Value Format code Result

'ABCDE' '8L 'ABCDE
'ABCDE' '8R' ' ABCDE!
'ABCDE' '8"*'L 'ABCDE***'
'0012345' '8R' ' 0012345’
'0012345' '8RZ! ' 12345
'0000000' '84RZ! "

'12345' '8"0"R' '00012345'
'1234567' '15R2' ' 1234567.00'
'1234567' '15R2$,' ' $1,234,567.00'
'12345.67' '15*R2$,' "rEEHR*$12,345.67'
'1234567' '14L2' '1234567.00 '
'43' 'L m' '43 m'

'43' 'Ri#H#m' '43m'

'43' "O"R#HHm' '043m'
'1234567890' "Lt - A '123-4567890
'123456789' 'L#3-#3-#3' '123-456-789'
'12345' 'L# 1T

'12345' 'R# '5'

'123456789' 'L#5' '12345'
'123456789' 'R#5' '56789'

'12345' 'L#6' '12345"

'12345' 'R#6' ' 12345’

'A LONG LINE' '6T" 'A LONGmLINE '
'A LONG LINE' T 'A LONGmLINE '
'A LONG LINE' '8T" 'A LONGmLINE '
'A LONG LINE' '8R' 'A LONG LmvINE!
'BANANAS' 3T 'BANTMANA™™S '

2.12-4

58

Teach Yourself OpenQM

Virtual Attributes

An I-type dictionary record defines a calculation based on data in the data file
records. Once an I-type item is defined, it can be referenced in query processor
sentences exactly as though it was a real data field. I-type items are also known as
virtual attributes, a term which emphasises the fact that their values are not
physically stored in the database.

An I-type dictionary item differs from a D-type item only in that field 1 contains the
type code I and field 2 contains the actual calculation to be performed. The
remaining fields are as for a D-type entry.

We saw a simple example in the dictionaries module where we calculated the value
of each stock item type by multiplying the price by the quantity in stock:

VALUE
Type 1 |I
Loc 2 |PRICE * QTY
Conv 3 |MD2
Name 4 |Stock Value
Format |5 |6R
SM 6 |S
Assoc 7

Field 2 holds the expression to calculate the value. Fields 3 to 7 of the dictionary
item are exactly as for a D-type item. In this example, because we are multiplying a
monetary value by a simple number, the result is also a monetary value and hence
requires the same conversion code.

A virtual attribute is a little QM Basic program. Such programs have to be compiled
into a form that can be executed by the QMBasic run machine. This will be done
automatically when the virtual attribute is first used in a query. Alternatively,
compilation can be forced by using the COMPILE.DICT (CD) command.

The compiled version of the expression and related control data appears in the
dictionary in fields 15 onwards. If you edit an I-type record using ED or SED, the
compiled data is hidden. Other editors may not do this and you need to beware that
this can contain absolutely any character sequence. Displaying these fields with the
editor might have unfortunate effects on your terminal state. It is best to avoid
displaying these fields.

A typical dictionary might contain many I-type items. The calculations defined by
them are only performed when they are to be used in a query and hence there is no
processing overhead involved in having many seldom used I-types in a dictionary.

2.12-4

Virtual Attributes 59

Exercise

Use ED or SED to add the VALUE I-type item shown above to the dictionary of your
STOCK file. To check that it works, you will need to type
LIST STOCK @ VALUE

The @ in this query sentence tells the query processor that we want to see all of the
default items as well as the VALUE item named later in the sentence. We will look
more closely at how this works when we discuss the query processor.

Notice how the query processor has expanded the width of the VALUE column from
the 6 characters specified in the format code so that the column heading fits. As an
alternative, we could make the column heading into two lines by replacing the space
between the words with a value mark. To do this with ED, position on line 4 of the
dictionary item and type

C/ /7253

or, with SED, delete the space and type

Esc-Q v
then try your report again (Don't forget that you can use the cursor up key to walk
back through previously typed commands rather than retyping them).

Note how the column heading has now appeared left aligned with periods used to fill
unused spaces. This might be better with the 'RX' control code as used in the
headings for PRICE and QTY. Modify your VALUE dictionary item again to add this
and repeat the query to display the modified report.

2.12-4

60 Teach Yourself OpenQM

Solution
VALUE
Type 1 |1
Loc 92 |PRICE * QTY
Conv 3 |MD2
Name 4 |"RX"Stock Value
Format |5 |6R
SM 6 |S
Assoc 7

The only change from the original I-type shown in the main text is that we have
added the 'RX' control code to the display name. The R shows the heading right
justified. The X suppresses the default action of filling unused columns with periods.

2.12-4

Virtual Attributes 61

The Virtual Attribute Expression

A virtual attribute expression consists of other data items defined in the dictionary,
constants, operators which manipulate the data, and a wide range of functions taken
from the QMBasic programming language. The value of the virtual attribute is the
result of evaluating this expression.

Complex virtual attributes are sometimes written as compound expressions in
which the calculation is performed in stages. A compound expression consists of a
series of expressions separated by semicolons. The result of each expression is stored
in variables named @1, @2, @3, etc so that they are available for use in later
expressions. The value of the compound virtual attribute is the result of the final
expression.

Data Items

The data items referenced by a virtual attribute may be real data fields defined by
D-type entries in the same dictionary or other virtual attributes. Where one virtual
attribute uses the result of another, they are combined during the compilation phase
rather than during execution to improve efficiency. If you amend the expression of an
virtual attribute that is used by some other virtual attribute, you must also
recompile the other item. It is best to use the COMPILE.DICT (CD) command to
compile all of the virtual attributes if you are uncertain whether there are
inter-dependant items.

A later section will introduce Pick style A and S-type dictionary items which are
supported by QM to ease migration. Once you have learned about these, A/S types
with a correlative expression are essentially the same as an I-type as far as use in
virtual attributes is concerned. A/S types without a correlative expression are
essentially the same as D-types.

Virtual attribute expressions often need to use constants. These may be numbers,
which are written without quotes, or character strings, which are enclosed in either
single or double quotes or in backslashes. Examples of constants are

14

-17.5

HRed"

'Part number'
\ABC\

There are also many useful data items available via @-variables. Some of the
commonly used ones are shown below.

@FM Field mark
@VM Value mark
@SM Subvalue mark

2.12-4

62 Teach Yourself OpenQM
@TM Text mark
@DATE The internal form of the date at which the query started execution
@FILENAME |The name of the file being processed
@ID The name of the record being processed
@TIME The internal form of the time at which the query started execution
@RECORD The database record being processed
Operators

The operators available to manipulate the data items are shown in the table below.
The operations are performed in the sequence shown. Where a single section of the
table contains more than one operator, they are of equal priority and are evaluated
left to right. Brackets may be used to modify the evaluation sequence in the same
way as in other mathematical formulae.

** or A Exponentiation. A**B is A raised to the power B
* Multiply
/ Divide
+ Addition
Subtraction

[start, length]

Substring extraction. "ABCDEF"[2,3] is "BCD"

[length]

Trailing substring extraction. "ABCDEF"[2] is "EF"

String concatenation. "ABC":"DEF" is "ABCDEF".

There is also a conditional expression of the form
IF condition THEN expr.1l ELSE expr.2

The value of this expression is that of expr.1 if the condition is true, expr.2 if the
condition is false. Any value other than zero or an empty character string is treated

as true.

2.12-4

Virtual Attributes 63

Exercise

Add a virtual attribute named TAX to the dictionary of your STOCK file to calculate
the tax due on selling an item. Test it in the same way as your VALUE item. Assume
that the tax should be 17.5% of the selling price.

If you have got this right, the tax on item 001 should be 0.30.

2.12-4

64 Teach Yourself OpenQM

Solution
TAX
Type 1 |1
Loc 2 |PRICE * .175
Conv 3 |MD2
Name 4 ["RX"Tax
Format |5 |5R
SM 6 |S
Assoc 7

You may have chosen to write the expression as
PRICE * 17.5 / 100

which gives the same answer but it is a good idea to resolve the constant part of this

expression as in our example.

2.12-4

Virtual Attributes 65

Relational Operators

Relational operators compare two data items, producing a true/false result. The true
value is represented by 1 and false by 0.

= EQ Equal to

NE <> Not equal to

> GT Greater than

< LT Less than

>= GE => Greater than or equal to
<= LE =< Less than or equal to

Complex conditions can be constructed using the AND and OR logical operators. The
AND operator returns true if both expressions are true. The OR operator returns
true if either (or both) expressions are true.

Example

PRICE >= 500 AND QTY > 50

This expression returns true if the item has a selling price of at least 5 (note that the
comparison is done on internal form data) and a stock level of over 50.

The MATCHES Operator

The MATCHES operator matches a string against a pattern consisting of one or
more concatenated items from the following list.

Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type
0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters
ON Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and 1 numeric characters

"string" A literal string which must match exactly. Either single or double
quotation marks may be used.

The values n and m are integers with any number of digits. m must be greater than
or equal to n.

The 0A, nA, ON, nN and "string" patterns may be preceded by a tilde (~) to invert the

2.12-4

Teach Yourself OpenQM

match condition. For example, ~4N matches four non-numeric characters such as
ABCD (not a string which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, ON, their inverses (~0A, etc) and "".

Example

DESCR MATCHES "Red...™

This expression returns true for items where the description begins with "Red".

The pattern string may contain alternative templates separated by value marks. The
MATCHES operator tries each template in turn until one is a successful match
against the string.

Group Extraction

We frequently find character sequences that are constructed from multiple
concatenated items. This is particularly common in record ids. A transaction file
might, for example, be keyed by an id of the form client-date-sequence where
sequence 1s a simple sequential number appended to the client-date to ensure that
multiple orders from the same client on one day have distinct ids.

If we need to extract the components from this composite item, we cannot use
substring extraction because each of the components is of variable length and hence
we do not know where it starts and ends. Group extraction lets us pick out one or
more component parts from a composite string where there is a separator character
between each part.

There are two ways to write this operation. The first uses the FIELD() function.
FIELD(string, delimiter, occurrence)

The FIELD() function takes a string divided into components by a single character
delimiter and extracts the given occurrence. In our client-date-sequence record id
example for a record id of 1744-11984-2, the three components could be extracted
using

FIELD(@ID, *-", 1) for the client (1744)

FIELD(@ID, *-7", 2) for the date (11984)
FIELD(@ID, "-", 3) for the sequence number (2)

Perhaps we want the date and the sequence number. The FIELD() function can be
extended to include the number of consecutive components to be extracted.

FIELD(string, delimiter, occurrence, count)

Thus
FIELD(@ID, *-", 2, 2)

would return 11984-2. Note that the embedded delimiter is included in the returned
data.

2.12-4

Virtual Attributes 67

The group extraction operation may be written in a different form as
string[delimiter, occurrence, count]

In this form, the count must be given, even if it is 1. The previous examples become

@ID["-", 1, 1] for the client (1744)
@ID["-", 2, 1] for the date (11984)

@ID["-", 3, 1] for the sequence number (2)

@ID["-", 2, 2] for the date and sequence number (11984-2)

The TRANS() Function

Our three demonstration database files do not operate in isolation. The CUST field of
the SALES file contains the id of the CUSTOMERS file record for the customer
placing the order. Similarly, the ITEM field contains the id of the STOCK file record
for the product ordered.

SALES
1 2 3 4 3
DATE CUST ITEM QT PRICE
STOCK
1 2 3
DESCR QTY PRICE
CUSTOMERS
1 2 3
NAME ADDR TEL.NO

When generating a report based on the orders file, we might want to fetch an
associated item from one of the other files. We can do this using the TRANS()
function.

Perhaps, even though our SALES record contains a copy of the price at the time the
order was taken, we wish to fetch the current selling price for the item ordered. We
could add a new virtual attribute named CURRENT.PRICE that contains

TRANS(STOCK, ITEM, PRICE, "V*%)
The TRANS() function requires four items inside the brackets. These are:
In this example we are going to fetch data from the STOCK file.

The file name

The record id The name given here must be a D or I-type item defined in the
same dictionary as the virtual attribute and is the field holding

the id of the record to be read from the target file (PROD.NO).

The field name This is the name of the field to be read from the target file

2.12-4

68

Teach Yourself OpenQM

(SELL). This name must be defined in the dictionary of the
target file. In QM, this may be a simple D-type item or a
virtual attribute.

The error code This determines what happens if we fail to find the data we are
looking for. The error code must be quoted. Possible values are:
C Return the id of the record we were trying to read.
V Return a null (blank) value and display an error
message.
X Return a null value.

An order can contain many product numbers. If the second parameter to the
TRANS() function is multivalued, it reads each of the specified records and returns a
multivalued result. The dictionary entry for the virtual attribute needs to define it as
multivalued if either the second parameter to the TRANS() function or the field being
returned is multivalued.

Add the CURRENT.PRICE virtual attribute to your SALES dictionary as an I-type
item. It should appear as

CURRENT.PRICE
Type 1 |I
Loc 2 |TRANS(STOCK, ITEM, PRICE, 'V')
Conv 3 |MD2
Name 4 |CurrentvmPrice
Format |5 |6R
SM 6 |M
Assoc 7 |LINE

Note that field 6 defines this as a multivalued item because although a single item
only has one price, the ITEM field may be multivalued, causing TRANS() to return
multiple prices in one operation. Also note that we have defined this I-type as being
part of the LINE association. Don't forget that you will also need to modify the LINE
phrase to add the new field name.

Now run a query
LIST SALES @ CURRENT.PRICE

Note how item 013 was priced at 0.28 when the order was placed but has a current
price of 0.30.

The next step in building a useful set of I-types for this dictionary is to add one that
calculates the total value of each line of the order. This needs to multiply
corresponding values in the PRICE and QTY fields to produce a similarly structured
multivalued list of line totals. Fortunately, the system manages the hard part of this
for us and all we need to do is calculate

PRICE * QTY

2.12-4

Virtual Attributes 69

All of the arithmetic operators work in this way when given multivalued data,
operating on corresponding pairs of values. The LINE.VALUE I-type becomes

LINE.VALUE
Type 1 |I
Loc 2 |PRICE * QTY
Conv 3 |MD2
Name 4 |Line Total
Format |5 |6R
SM 6 |M
Assoc 7 |LINE

Notice how the expression is identical to the one we used in the STOCK dictionary to
calculate the value of the stock for each item. The only things that change because
we are now working with multivalued data are that field 6 contains M and we need
to add this item to the LINE association.

We can test this new I-type with
LIST SALES @ LINE.VALUE

The final step in building this dictionary is to insert a further I-type to calculate the
total value of the order. To do this, we need to use the SUM() function which adds up
the elements of a multivalued data item. The expression is simply

SUM(LINE . VALUE)

Add this as an I-type named SALE.VALUE that contains

SALE.VALUE
Type 1 |I
Loc 2 |SUM(LINE.VALUE)
Conv 3 |MD2
Name 4 |'RX'Total
Format |5 |7R
SM 6 |S
Assoc 7

Test this final I-type with
LIST SALES @ LINE.VALUE SALE.VALUE

It would be nice to arrange that the LINE.VALUE and SALE.VALUE items appear
automatically when we list the SALES file. We will discuss the detail of this in the
query processor module but we can do it by adding the two field names to the end of
line 2 in the item named @ in the SALES dictionary. If you have got this right,
typing just

2.12-4

70

Teach Yourself OpenQM

LIST SALES

now produces the complete report.

Think about what the SALE.VALUE I-type does. It evaluates
SUM(LINE . VALUE)

where LINE.VALUE is itself an I-type defined as
PRICE * QTY

This is a good example of one I-type that uses the result of another. Remember that,

as described at the start of this section, the process of compiling the I-type expression

performs a substitution so that the actual expression evaluated by SALE.VALUE is
SUM(PRICE * QTY)

If we were subsequently to modify the LINE.VALUE expression in some way, we
need to force recompilation of the SALE.VALUE expression too. This can be done
with

COMPILE.DICT SALES

and it is a good idea to do this whenever there is a possibility that a change might
affect some other I-type.

Exercises

Add a virtual attribute called NAME to the SALES dictionary to fetch the customer
name from the CUSTOMERS file.

Add a virtual attribute called DESCR to the SALES dictionary to fetch the part
description from the STOCK file, displaying this in a 20 character wide field.

2.12-4

Virtual Attributes 71

Solutions
NAME
Type 1 |1
Loc 2 |TRANS(CUSTOMERS, CUST, NAME, "C%)
Conv 3
Name 4 |Customer Name
Format |5 |20T
SM 6 |S
Assoc 7

We have used the C error code so that, if we are unable to find the customer record,
we will display the customer number in place of his name. Of course, failing to find

the customer record implies that our data is faulty but it is a good idea to allow for

such problems.

DESCR
Type 1 |1
Loc 2 |TRANS(STOCK, ITEM, DESCR, *C*%)
Conv 3
Name 4 |Description
Format |5 |[20T
SM 6 |M
Assoc 7 |LINE

Notice how the result of this I-type is defined as being multivalued because the
ITEM field may contain a multivalued list of item ids.

Note also that we have added this to the LINE association. The LINE phrase must
also be modified to add DESCR to the list of fields within the association.

2.12-4

72

Teach Yourself OpenQM

Accessing BASIC Subroutines from I-Types

Sometimes we want to develop a virtual attribute that cannot be evaluated by a
simple (or even complex!) expression. A virtual attribute may make use of
subroutines written using the full QMBasic programming language. Such I-types
give almost limitless possibilities but it is easy to lose sight of what the expression is
doing.

To call a QMBasic subroutine from an I-type, we use the SUBR() function. In its
simplest form this is written as

SUBR("subroutine_name™)

The named subroutine must be in the system catalogue, a concept discussed later in
the programming sections of this course. The programmer developing this subroutine
must arrange that it returns its result via a single subroutine argument (or use the
FUNCTION equivalent).

In many cases, although the subroutine can see the data record being processed via
the @RECORD variable and its id in @ID, it needs additional data passed in. The
SUBR() function can be extended to include further subroutine arguments.

SUBR("subroutine.name®, argl, arg2, ...)

In all cases, the result of the subroutine must be returned via its first argument.

2.12-4

Virtual Attributes 73

Working with Multivalues

Virtual attribute expressions can do some amazingly complex things with very
simple expressions. This is because the language has a large number of functions
that perform operations on multivalued data on a value by value basis. The following
paragraphs give a brief overview of these. You can only really discover their power by
seeing how they can be used in real applications.

The REUSE() Function

We have seen that the arithmetic operators (¥, /, +, -) all work on corresponding pairs
of values when the items on either side of the operator are numeric arrays. For
example,

A contains 12vm9vm 6vm18
B contains 4vm3vm2vm12

A+B evaluates to 16vm12vwm8vm30
A/ B evaluates to 3vm3vm3vm1.5

What if there are fewer items in B than in A?

A contains 12vm9vm 6vm18
B contains 4vm3vm2

A+B evaluates to 16vm12vu8vm18
A / B evaluates to 3vm3vm3vm18

The addition has assumed that the "missing" element of B is zero. This is also true
for subtraction and multiplication. For division, the missing item is assumed to be 1
if it is the divisor to avoid a divide by zero error.

Sometimes, we want to reuse the last value in place of the missing item. The
REUSE() function allows us to do this.

A contains 12vm9vm 6vm18
B contains 4vm3vm2

A + REUSE(B) evaluates to 16vm12vm8vm20

This function is most often used when its argument is a single value, perhaps even a
constant. For example, to add 17.5% tax to a list of prices, we could write
EX.TAX_.PRICE * REUSE(1.175)

The REUSE() function is frequently used in dictionary I-type items, often in
conjunction with the other multivalued functions described below.

2.12-4

74

Teach Yourself OpenQM

Other Multivalue Functions
Imagine we have two fields such that
A contains ABCvwDEFwGHI

and
B contains 123vm456vm789

we can join these two fields using the concatenation operator.

A : B results in ABCvwDEFwGHI123vw456vm789

The concatenation operator has done exactly what we asked it to do. It has joined the
two items end to end. It is more likely that what we really wanted to do was to
concatenate corresponding elements of each value. This can be done using the
CATS() function.

CATS(A, B) resultsin ABC123vwwDEF456vmGHI789

There are many other functions which similarly work element by element through
multivalued items. In general, the multivalued function name is formed by adding a

S to the equivalent single valued function or operator to pluralise the name.

The multivalued string functions are:

CATS(Multi-valued concatenation
COUNTS() Multi-valued variant of COUNT()
FIELDS() Multi-valued variant of FIELD()
FMTS() Multi-valued format

ICONVS() Multi-valued input conversion
INDEXS() Multi-valued equivalent of INDEX()
NUMS() Multi-valued variant of NUM()
OCONVS() Multi-valued output conversion
SPACES() Multi-valued variant of SPACE()
STRS() Multi-valued variant of STR()
SUBSTRINGS() Multi-valued substring extraction
TRIMBS() Multi-valued variant of TRIMB()
TRIMFS() Multi-valued variant of TRIMF()
TRIMS() Multi-valued variant of TRIM()

There are also a number of multivalued logical functions. These provide equivalents
to the relational operators and other functions that return boolean (true/false)
values.

For example, the GTS(a, b) function takes two multivalued items and returns a new
multivalued list of true / false values indicating whether the corresponding elements
of a are greater than those of b.

Thus, if A contains 11vmOvm17vMPQRvm2
and B contains 12vwm0vm14vmACBvm2

2.12-4

Virtual Attributes 75

GTS(A, B)

returns OvmOvm1vm1vmO

The multivalued logical functions are:

ANDS() Multi-valued logical AND

EQS(Multi-valued equality test

GES(Multi-valued greater than or equal to test
GTS(Multi-valued greater than test

LES() Multi-valued less than test

LTS() Multi-valued less than or equal to test
NES() Multi-valued inequality test

NOTS() Multi-valued logical NOT

ORS() Multi-valued logical OR

The IFS() function returns a multivalued list constructed from elements chosen from
two other multivalued lists depending on the content of a third list.

IFS(control _list, true_list, false._list)

where
control.list 1s a list of true / false values.

true.list holds values to be returned where the corresponding element of
control.list is true.

false.list holds values to be returned where the corresponding element of

control.list is false.

The IFS() function examines successive elements of control.list and constructs a
result array where elements are selected from the corresponding elements of either
true.list or false.list depending on the control.list value.

Example

A contains 1vmOvmOvm1lvm1lvm1lvmO

B contains 11vm22vm3vm4vm9 1vm36vm7
C contains 14vm61vm2vmOvm3 5vml 8vm3

IFS(A, B, C) returns 11vwm61vm2vm4vm91vm36vm3

2.12-4

76

Teach Yourself OpenQM

The DCOUNT() Function

The DCOUNT() function can be used to count the number of items in a list separated
by some delimiting character.

DCOUNT\(list, delimiter)
where
list is the list to be counted
delimiter 1is the single character separating list items.
Although DCOUNT() works for any delimiter character, it is most frequently used

with the mark characters.

Example

DCOUNT(ITEM, @VM)

Used in our SALES file, this would return the number of lines in the order.

2.12-4

A and S-type Dictionary Records 77

A and S-type Dictionary Records

Unless you are migrating an application from a Pick style system to QM, you can
safely skip this section.

A and S-type dictionary records originated in the Pick and Reality database products
and are supported by QM for compatibility. If your application was migrated from
these systems, you are likely to have A and S-type dictionary records. It is strongly
recommended that new developments use D and I-type records.

In QM, there is no difference between A and S-type fields. In Pick systems, A types
were used to define attributes (fields) and S types to define synonyms as alternative
ways to view the data.

Field | Content Description
1 A {description} Type code and optional descriptive text
S {description}

2 Field number Location of the data within the data records. Where
field 8 contains a correlative, the field number is
ignored.

3 Column heading Text to appear as a column heading in a query

processor report. A value mark character in the
heading text inserts a newline thus forming a multiline
heading. If blank, the field name is used.

4 C;number{;number} |A code used to link associated multivalue fields.
D;number
Not used in QM
Not used in QM

{Conversion code} A conversion code applied to convert the data to
external form

{Correlative code} | A formula applied to the calculate the value of the item

L Left justified
R Right justified
T Text wrapping, breaking on word boundaries
U Left justified, overwriting whitespace
10 Width Column width in query processor report

Associations in A and S-type dictionary items are defined using the code in field 4. In
Pick style systems, one of the elements of an association is said to control the others.
In the context of our sales application, the customer did not come into the shop and
say "I think I will buy three of something, what shall I buy?" but he came in to buy a
specific product and then decided how many he needed. In this example, the product
number is considered to be the controlling item and the quantity and price are
dependent on it.

2.12-4

78

Teach Yourself OpenQM

One of the associated fields must include the C code in field 4 of its dictionary entry
to define it as the controlling field. This is followed by a semicolon delimited list of
field numbers of the dependent items in the association. The other associated fields
must use the D code to point back to the field that contains the C code.

The correlative code in field 8 is like an I-type in that it defines a calculation to be
applied to evaluate the item but it is handled very differently.

Also, note that correlatives are applied as soon as the data is read from the file,
before selection or sorting whereas conversions are applied as the final step before
display of the data.

Correlatives

There are two types of correlative expression. An A (algebraic) correlative is an
expression written in much the same way as one might write an I-type expression
but is far more limited in what it can do. The expression is prefixed by the letter A
optionally followed by a semicolon. An F (function) correlative starts with an F and
an optional semicolon and is written in reverse Polish notation, separating each
element with a semicolon. F-correlatives are difficult to read and hence difficult to
maintain.

On Pick systems, A-correlatives are transformed into F-correlatives at the start of a
query and then executed interpretively. Some developers write F-correlatives directly
to skip this initial translation. On QM, both types of correlative are compiled in much
the same way as I-types and hence there is never a justification to write
F-correlatives which are much harder to understand. If you really want to know
about F-correlatives, see the QM Reference Manual. Better still, when migrating an
application, replace correlatives with I-types as soon as possible.

There are several key differences between A-correlatives and I-type expressions:
o Correlatives normally access data by field number, not field name
e Correlatives perform only integer (whole number) arithmetic

e Correlatives are limited to a few simple operations

The data items in a correlative expression may be:
number A field number
N(field name) To access a field by name.

"string" A literal string enclosed in single quotes, double quotes or
backslashes. Note that numeric constants must be written as
strings or they appear to be field numbers.

D The system date in internal form

T The system time in internal form

@NI The number of items processed

@ND The number of detail lines since the last breakpoint
@NV The value counter for a tabular report

2.12-4

A and S-type Dictionary Records 79

@NS The subvalue counter for a tabular report
@NB The breakpoint level number

Thus the value of the stock for each item of our STOCK file could be calculated by a
correlative expression

A;2*3
or, more meaningfully,
A;N(QTY)*N(PRICE)

Either of these is equivalent to an I-type expression
QTY * PRICE

The operators available within correlative expressions are

* Multiplication
/' Integer division '5'/'2'is 2, not 2.5
+ Addition

Subtraction

String concatenation
The standard six relational operators are available as =, # or <>, <, >, <= and >=,
The AND and OR operators are available for logical relationships.

Expressions may include brackets to modify the order of evaluation.

Correlatives may also include some special functions:

R(exprl, expr?2) Returns the remainder after integer division of exprl by
expr2. Thus R('5','2") would return 1.

S(expr) Sums all the values in expr.

exprllexpr2,expr3] Substring extraction. Returns expr3 characters of exprl,
starting at character position expr2.

IF exprl THEN expr2 ELSE expr3 Returns the value of expr2 if exprl is true;
otherwise returns the value of expr3. The
expressions may be enclosed in brackets.

(expr) Applies expr as a conversion code. It is often used with the T
code to provide an equivalent of the I-type TRANS()
function. For example:

A;N(ITEM) (TSTOCK;X;151)
in the dictionary of the SALES file could be used to fetch the
description of each item.

2.12-4

80

Teach Yourself OpenQM

10

The Query Processor

The QM query processor can be used to produce reports based on the data in one or
more files. It can also be used to construct lists of records to be processed by other
operations. In this module, we will learn about the various query processor verbs, the
components of a query sentence and how we can piece the components together.
There are a large number of examples for you to try as well as some longer exercises.

Query Processor Verbs

There are many query processor verbs. The most important is LIST which produces
reports either on the terminal screen or on a printer.

All query processor verbs share a common general format though not all elements
are applicable to all verbs. This format is

verb filename selection.clause sort.clause display.clause options

where
verb 1s the query processor verb to be used.
filename specifies the file to be processed.

selection.clause specifies which records are to be included in the report.
sort.clause specifies the order in which the reported data is to be output.

display.clause specifies the fields to be displayed in the report and how they
are to be reported.

options are various additional options to control the page layout, output
destination, etc.

The clauses that follow the file name are all optional and may appear in any order.
The only order specific features are that fields will be shown left to right across the
report in the order in which they are specified in the query sentence and multiple
selection or sort clauses will be applied in the order in which they appear.

During processing of a query sentence, each word and symbol on the command line is
looked up first in the dictionary of the file being processed and then, if not found
there, in the VOC file. Quoted items are always treated as literal values.

2.12-4

The Query Processor 81

The major query processor verbs are summarised in the table below.

COUNT Count records meeting given criteria

LIST Produce a report on the terminal or printer

LIST.ITEM List the raw data from a file

LIST.LABEL Print address labels, etc.

REFORMAT Restructure data to produce a new file

SEARCH Search for a text string in a file

SELECT Build a list of records meeting given criteria

SORT Produce a report on the terminal or printer, sorted by record id
SORT.ITEM List the raw data from a file, sorted by record id
SORT.LABEL Print address labels, etc., sorted by record id

SSELECT Build a list of records meeting given criteria, sorted by record id
SUM Sum the values of given data fields

The Filename

The filename in a query sentence specifies the file to be processed. This must

correspond to a file defined in the VOC via an F or Q-type record.

A query processor sentence may only reference a single file though the dictionary of
that file may include virtual attributes to fetch data from other files. In an earlier
exercise, we added an entry to the SALES file dictionary named CURRENT.PRICE
to reference the current selling price stored in the STOCK file.

The filename may be prefixed by DICT to process the dictionary part of the file.

Examples

LIST STOCK will list the data part of the STOCK file.

LIST DICT STOCK will list the dictionary of the STOCK file.

Use of Quotes and Casing

QM is very relaxed regarding use of quotes. Pick style systems usually require that
record ids referenced in query processor commands are enclosed in single quotes and
that all other constants are enclosed in double quotes. All examples in this module
omit quotes where they are not needed in QM.

Also, the query processor is largely case insensitive for keyword and field names. The
examples in this section are shown in uppercase simply because this is historically

2.12-4

82

Teach Yourself OpenQM

how most users work.

The Selection Clause

The selection clause specifies which records are to be included in the report. QM
offers several methods to select records. If no selection criteria are given, all records
are reported.

The simplest selection clause consists of one or more record ids. These should be
quoted if there is any risk that they might also appear as dictionary or VOC items.

For example
LIST STOCK 001 013

Record selection performed in this way is very fast because the record(s) can be found
by applying the file's hashing algorithm to go directly to the part of the file holding
the data. The same performance benefits apply to use of a select list, a topic that we
will discuss later.

The WITH Keyword

The most frequently used form of selection clause is the WITH keyword. This is used
to select only those records that meet certain criteria.

Example

LIST STOCK WITH PRICE > 5

This query shows only those items with a price of over 5.00.

The WITH clause has many variations and many short forms. The example above
uses a simple relational operator to compare the PRICE field with the value 5. Note
that the comparison is written using the external form of the data even though the
cost price is stored in the data file scaled up to a lower unit (cents, pence, etc).

Where a field that has a conversion code is compared with a constant value, the
constant is converted into internal format and the comparison is done using the
internal form data. In the above example, this results in a performance benefit by
converting the constant value once rather than converting each record's price to
external form. More importantly, it allows some flexibility in how the constant is
written. Consider the examples below.

LIST SALES WITH DATE > "5 JUN 07"
LIST SALES WITH DATE > 6/5/07
LIST SALES WITH DATE > "JUN 5 2007"

Note the need for quotes around the dates in two of these examples as they contain
spaces.

2.12-4

The Query Processor 83

With American date formatting enabled (the default), all three queries produce the
same result because the comparison is done using the internal representation of 5
June 2007 (14401). If your system is running with European date format enabled,
the date in the second query would be taken as 6 May 2007.

The relational operators available are

= EQ EQUAL Equal to

NE <> NO Not equal to

> GT GREATER |AFTER Greater than

< LT LESS BEFORE Less than

>= GE => Greater than or equal to
<= LE =< Less than or equal to

The AFTER and BEFORE keywords make many queries using date comparisons
more readable.
LIST SALES WITH DATE AFTER "5 JUN 07"

The dictionary of our SALES file includes an item named MONTH that shows the
month in which an order was placed. This is simply a reference to the DATE field
with a conversion code of DMA (date, month alphabetic). Try this with a query such
as

LIST SALES MONTH

Suppose we want to see only orders placed in July. It seems that we could do this
with
LIST SALES WITH MONTH = "JULY"

Why doesn't this work? (Hint: Think your way through the actions of the query
processor as described above).

This query takes the external form of the date and converts it to an internal day
number to do the comparison. The external form is simply JULY. What day of July,
What year?

The date conversions are defined such that a date with no year is assumed to be in
the current year and a date with no day number is assumed to refer to the first day
of the month. Thus the above query is actually asking for orders placed on the first of
July in the current year.

How could we modify the dictionary to make this work? One solution would be to
replace the MONTH item with an I-type expression that evaluated to the month
name but had no conversion code. This requires us to introduce a new function,
OCONYV(), that performs output conversion within the expression being evaluated.

2.12-4

84

Teach Yourself OpenQM

MONTH2
Type 1 |I
Loc 2 |OCONV(DATE, 'DMA")
Conv 3
Name 4 |Month
Format |5 |9L
SM 6 |S
Assoc 7

Add this to the SALES dictionary as MONTHZ2. Then try the query again with the
new dictionary item name

LIST SALES WITH MONTHZ2 = "JuLY"

This now works but the month name must be entered in uppercase. The OPTION
command of QM (not discussed in detail in this course) has a mode that makes query
processor operators case insensitive by default. Alternatively, we can ask that just
this one use of the equals operator is treated as case insensitive by modifying the
query to become

LIST SALES WITH MONTH2 = NO.CASE "July"

The LIKE Operator
The LIKE operator (synonyms MATCHES and MATCHING) matches a string
against a pattern consisting of one or more concatenated items from the following list

(which should look familiar as we met it before in the section on virtual attributes).

Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type
0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters
ON Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double
quotation marks may be used.

The values n and m are integers with any number of digits. m must be greater than
or equal to n.

The 0A, nA, ON, nN and "string" patterns may be preceded by a tilde (~) to invert the
match condition. For example, ~4N matches four non-numeric characters such as
ABCD (not a string which is not four numeric characters such as 12C4).

2.12-4

The Query Processor 85

A null string matches patterns ..., 0A, 0X, ON, their inverses (~0A, etc) and "".

Examples

LIST STOCK WITH DESCR LIKE ""Pencil®.._."

Note that the above example needs the full quoting or one literal string inside
another as omitting the outer quotes would cause the command parser to treat
'Pencil' and ... as two separate items. It is, however, possible in this example to omit
all of the quotes

LIST STOCK WITH DESCR LIKE Pencil...

Note also that the query we have executed here is looking for items where the
description begins with "Pencil". There are two problems with this.

Firstly, the LIKE operator used in this way is case sensitive so we need to know
exactly how the data is stored. We can overcome this problem by use of the case
insensitivity mode of the OPTION command mentioned earlier or by the NO.CASE
qualifier to LIKE

LIST STOCK WITH DESCR LIKE NO.CASE PENCIL...

Secondly, the LIKE operator in this query is not looking for the word Pencil but
simply for descriptions that start with those letters. Try the query again but this
time look for pens

LIST STOCK WITH DESCR LIKE Pen...

This time our report contains both pens and pencils. We could extend our query to
include the space after the word Pen
LIST STOCK WITH DESCR LIKE *"Pen ..."

but notice how item 005 has disappeared because it's description is simply Pen with
no following space. What we really need is a way to look for a whole word within the
description. The query processor does not provide a way to do this directly but it is
very easy with a simple I-type as we will see later.

The UNLIKE Operator

The UNLIKE operator selects records that do not match the given pattern.

LIST STOCK WITH DESCR UNLIKE Pencil...

This query will show us everything except the pencils. Although this example query
is unlikely to be very useful, there are many times with realistic data where the
UNLIKE operator is of great value.

2.12-4

86

Teach Yourself OpenQM

The SPOKEN Operator

The SPOKEN operator (synonyms SAID and ~) selects records in which the specified
field "sounds like" some given value.

This data filtering method, known as Soundex, pre-dates QM and was originally
developed for use in systems where users were taking telephone calls and might not
be able to spell the caller's name correctly. A Soundex match could be used to offer a
list of names from which the correct caller could be selected.

Try this query:
LIST CUSTOMERS WITH NAME SPOKEN ARKWRIGHT

Note how the query processor has found the customer even though we have spelt the
named incorrectly. The SPOKEN operator is always case insensitive so we could
have used Arkwright in place of ARKWRIGHT.

How Does it Work?

The Soundex system converts the data items to be compared into a four character
sound code.

The letters of the alphabet are divided into seven groups:

0 A E HI O U W Y
1 B F P V

2 C G J K Q S X Z
3 D T

4 L

5 M N

6 R

The first letter of the word is retained (You must get that right!).

The remaining letters are replaced by their group number except that

All letters in group zero are ignored

A letter that is in the same group as the immediately previous one is ignored
Non-alphabetic characters are ignored

The sound code is limited to four characters, padded with trailing zeros if necessary

Although Soundex matching is a useful technique, it is not perfect and is best when
combined with other selection methods.

2.12-4

The Query Processor 87

Case Insensitivity

All of the relational operators and the LIKE and UNLIKE operators may be followed
by NO.CASE to make the comparison case insensitive. For example,
LIST CUSTOMERS WITH NAME LIKE NO.CASE COOPER...

There is also a QM option setting to make the query processor case insensitive by
default.

Complex Selection Criteria

A selection clause may contain several of the above criteria linked together with the
AND and OR keywords to form compound conditions. A condition using the AND
keyword is true if both of the component conditions is true. A condition using the OR
keyword is true if either (or both) of the component conditions is true.

Examples
LIST STOCK WITH DESCR LIKE Pencil... AND PRICE > 5

LIST STOCK WITH DESCR LIKE ...red OR DESCR LIKE ...green

The elements of the condition are evaluated left to right with the AND and OR
operators having equal priority. Thus a single condition containing both AND and
OR may not do what the developer intended. Brackets can be used to force
evaluation into a specific order. Brackets should always be included in conditions
mixing AND and OR to aid readability, even if they make no difference to the
evaluation.

Example

LIST STOCK WITH DESCR LIKE Pencil... AND DESCR LIKE ...red OR
DESCR LIKE ...blue

This query might not do what you would expect on reading it quickly. It shows
records 003, 012 and 013, two of which are pencils but one is a pen. Adding some
brackets fixes this problem

LIST STOCK WITH DESCR LIKE Pencil... AND (DESCR LIKE ...red OR
DESCR LIKE ...blue)

and we now only see the red and blue pencils.

QM has an option to treat AND as higher priority than OR for compatibility with
some other systems.

2.12-4

88

Teach Yourself OpenQM

Selection Criteria Short Forms

These last few queries have bgun to get a little verbose. The query processor has
several short forms to make queries more readable and to reduce the typing
required.

1. Omitting the field name

A relational, pattern match or sound match operator that is not preceded by a field
name uses the same field as in the previous condition.

LIST STOCK WITH PRICE >= 1 AND PRICE <= 5

can be reduced to
LIST STOCK WITH PRICE >= 1 AND <= 5

or even
LIST STOCK WITH PRICE BETWEEN 1 5

Our combination AND/OR query above,
LIST STOCK WITH DESCR LIKE Pencil... AND (DESCR LIKE ...red OR
DESCR LIKE ...blue)

1s reduced to

LIST STOCK WITH DESCR LIKE Pencil... AND (LIKE ...red OR LIKE
.. .blue)

If the field name is omitted from the first condition in the sentence, the condition is
assumed to relate to the record id.
LIST STOCK WITH @ID >= 100

can be reduced to
LIST STOCK >= 100

2. Implied OR

A relational operator followed by a list of values assumes an OR relationship.
LIST STOCK WITH DESCR LIKE ...red OR DESCR LIKE ...blue

can be reduced to
LIST STOCK WITH DESCR LIKE ...red .._blue

LIST SALES WITH ITEM

can be reduced to
LIST SALES WITH ITEM 001" 004"

The implied OR short form is frequently used for mechanically produced queries
where an application takes the root query and then appends a list of possible values.

''001'" OR ITEM = 004"

Combining the first two short form methods allows us to further reduce our combined
AND/OR query from

LIST STOCK WITH DESCR LIKE Pencil... AND (DESCR LIKE ...red OR
DESCR LIKE ...blue)

2.12-4

The Query Processor 89

to
LIST STOCK WITH DESCR LIKE Pencil... AND (LIKE ...red ...blue)

3. Testing for empty fields

A field name in a selection clause that is not followed by an operator is assumed to be
a test for a non-empty value. Our SALES file includes a pair of associated fields that
we have not yet discussed. These are PAYMENT.DATE and PAYMENT. These hold
the date on which the payment was made and the amount paid. By making these
multivalued, we can allow customers to pay their bills in stages.

To see the payment data, type
LIST SALES @ PAID

Just as in earlier exercises, the @ symbol asks the query processor to show all the
columns it would normally show by default plus the item identified by PAID. But
what is PAID? Take a look at the dictionary.

PAID is the phrase that links the PAYMENT.DATE and PAYMENT fields as an
association. By using this phrase name within the query, it gets expanded and we
end up with a report that contains all the elements of the association. You can use
any suitable phrase in this way.

Perhaps we want to list all the orders for which payments have been received. We
can do this with a query of the form

LIST SALES WITH PAYMENT # "

but this can be reduced to a much more natural language form of
LIST SALES WITH PAYMENT

Similarly, if we want to find the orders for which no payments have been made, we
can use

LIST SALES WITH PAYMENT = "

which can be reduced to
LIST SALES WITH NO PAYMENT

or
LIST SALES WITHOUT PAYMENT

Selection Against Multivalued Fields

If the field named in a WITH clause is multivalued, at least one of the values must
match the test for the record to be included in the report. For example,

LIST SALES WITH ITEM = 001

The above query shows two records. One has only product 001, the other is for two
products one of which is product 001.

Alternatively, we might want to select the records that include item 001 but show

2.12-4

90

Teach Yourself OpenQM

only the information for the selected item. We can do this with the WHEN keyword.
For example,
LIST SALES WHEN ITEM = 001

This report filters out just the values within the associated fields for which the
condition is met.

As a third alternative, we might want to select records where all of the values in a
multivalued field satisfy the selection criteria. This can be done using the WITH
EVERY construct. For example,

LIST SALES WITH EVERY ITEM = 001

This query restricts the report to orders where the only product number is 001.

Multiple WITH Clauses

Multiple conditions can also be included by using more than one WITH clause.
LIST STOCK WITH PRICE < 10 WITH QTY < 10

This query shows the items costing less that 10.00 for which we have fewer than 10
in stock. There is an implied AND between the two WITH clauses.

BEWARE: Multiple WITH clauses are handled differently in different multivalue
products. Information style systems such as QM have an implied AND between the
clauses but Pick style systems have an implied OR. QM has an OPTION setting to

use an implied OR for Pick compatibility but the safest approach is always to include
the AND or OR keyword.

Sampled Reports

Sometimes, particularly when testing reports against very large files, we want to
process just a small proportion of the total data. Two methods exist to do this.

The FIRST keyword limits the report to a specific number of records that meet the
selection criteria. If the number is omitted, ten records are reported.

Example

LIST STOCK FIRST 3 WITH DESCR LIKE Pencil...

This query produces a report of the pencils in stock but limits it to show at most
three items. Note that, despite the FIRST clause coming before the other selection
criteria, the record count limit imposed by FIRST is applied after other selection.
This query finds the pencils and stops when it has found three. It does not look at the
first three records in the file and return only the pencils.

2.12-4

The Query Processor 91

The SAMPLED Keyword

The SAMPLED keyword limits the report by processing only every n'th record that
meets the selection criteria. If the number is omitted, every tenth record is reported.

Example

LIST STOCK WITH QTY > 10 SAMPLED 3
This query shows every third record that has a quantity of greater than 10.

The filtering of both FIRST and SAMPLED is applied after selection but before
sorting.

2.12-4

92

Teach Yourself OpenQM

The Sort Clause

You may have noticed that the records in our reports so far do not appear to be in
any particular order. In the absence of other instructions, the query processor simply
works through the file group by group for best performance. The hashing process will
mean that this is effectively a random sequence of records.

We can use a sort clause to specify the order in which the reported records should
appear. In its most commonly used form it is introduced by the BY keyword.

LIST STOCK BY DESCR

This query produces a report sorted into alphabetical order of description. Similarly,
we could sort on a numeric field such as PRICE
LIST STOCK BY PRICE

We can reverse the order by use of the BY.DSND keyword to perform a descending
sort
LIST STOCK BY.DSND PRICE

The BY and BY.DSND clause use the format specification in the dictionary to
determine how the comparison is performed. If the format specification defines the
field as either left or text justified (L or T), the comparison process used in the sort
examines characters from the left end of each item to determine their correct
sequence. If the format specification defines the field as right justified (R) and the
two items being compared are both numbers, a strict numeric comparison is
performed. For a right aligned item where one or both values are not numbers, the
comparison process adds leading spaces to the shorter item and then compares
character by character from the left.

This distinction is very important and frequently leads to errors. The conversion
applied to display dates usually results in a fixed number of characters so that it
appears to make no difference whether the field is defined as left or right justified.
However, a date field must be defined as right justified for the sort to work correctly.
If a date field is defined as left justified, dates before 18 May 1995 (day 10000) are
shown after dates later than that point. This is because a character by character
comparison would treat 9999 (17 May 1995) as being after 10000.

A single query may contain multiple sort clauses. They are applied left to right, later
sorts being applied where two or more records have the same values in the fields for
earlier sorts.

LIST STOCK BY PRICE BY DESCR

This query shows the stock items in ascending price order and, within each group of
items at the same price, sorts them alphabetically.

There is a common misconception that a query that uses BY or BY.DSND must use
the SORT verb. Clearly this is not true because the examples above work correctly
with LIST. The SORT verb is equivalent to LIST with a final BY @ID component.
Thus the following two queries produce identical output

SORT STOCK BY PRICE

2.12-4

The Query Processor 93

LIST STOCK BY PRICE BY @ID

Do not use SORT unless you actually want to sort by record id as it involves extra
processing.

Sorting Multivalued Fields

The BY clause does not take any special action for fields containing value marks or
subvalue marks. For example, listing the SALES file with a query such as

LIST SALES BY ITEM

produces a report in which the items are not correctly sorted because any record with
multivalued data in the ITEM field treats this as a simple character string without
giving any special attention to the value marks.

To resolve this problem we can use the BY. EXP keyword in place of BY to "explode"
the multivalues, effectively applying the first law of normalisation to yield a fully
normalised view of the data. A query such as

LIST SALES BY.EXP ITEM

produces a report with the product numbers correctly sorted.

Note how the query processor has made use of the associations as defined in the
dictionary so that related fields are correctly paired up.

The BY.EXP.DSND keyword can be used for a descending exploded sort.

Great care should be taken to ensure that the data reported makes sense. The final
column of this report shows the order total value, even though each order has been
broken into multiple lines. Adding up the figures in this column gives a very healthy
view of the order book!

A better field to report would be to omit SALE.VALUE and show only LINE.VALUE.
We will discuss how we modify the displayed fields later.

2.12-4

94

Teach Yourself OpenQM

The Display Clause

The display clause determines which fields will appear in the report and how they
will be displayed.

In its simplest form, the display clause consists of a list of field names. These will
appear in the report left to right in the order that they occur in the query sentence.
The default view of the record id, defined by the @ID dictionary record, always
appears as the first column of the report unless it is suppressed using the ID.SUP
keyword.

Examples

LIST STOCK QTY DESCR
LIST CUSTOMERS NAME TELNO 1D.SUP

The names used for displayed fields must be defined in the dictionary as D, I, A or
S-type items.

The EVAL Keyword

Sometimes we wish to include a calculated value in a report for which there is not
already a suitable dictionary I-type entry and which will probably not be needed
again. We could create a new I-type item, produce the report and then remove the
I-type item. Alternatively, we can use the EVAL keyword to introduce a temporary
virtual attribute.

Example

LIST STOCK EVAL "PRICE * QTY"

When we use EVAL in this way, the evaluated expression takes its conversion code,
format, single/multi-value flag and association from the dictionary entry for the first
data item referenced. In this case, the PRICE item yields appropriate values for
these. The expression itself is used as the column heading.

As another example, consider a task management system where we store the start
and end dates of each task. If we wanted to know how long a task took, we might use
a query such as

LIST TASKS EVAL "END - START"

Because END would be defined in the dictionary to have a date conversion, a task
that took five days, for example, would show the result of this evaluated expression
as b January 1968. This is hardly useful! We will discover later how we can supply
alternatives for the conversion and other properties used to display the results.

The EVAL keyword can be used anywhere in a query sentence where a field name is
required, not just in the display clause. For example,
LIST STOCK BY EVAL "PRICE * QTY"

2.12-4

The Query Processor 95

We might even want to use the evaluated expression more than once:
LIST STOCK BY EVAL "PRICE * QTY"™ EVAL "PRICE * QTY"

This is clearly becoming unreadable. Instead, we can use the AS qualifier to EVAL to
give a name to the calculated value and use this name later in the query to reference
the same value for a second time.

LIST STOCK BY EVAL "PRICE * QTY"™ AS VAL VAL

When AS is used, the default column heading becomes the name assigned to the
evaluated expression.

The Default Listing Phrase

You have probably been wondering how the query processor decides which fields
(columns) to show in the report. If a query sentence contains no display clause, the
query processor looks in the dictionary for a PH-type (phrase) entry named @. If this
1s found, it is attached to the end of the query sentence. Typically, this phrase
contains a default list of fields to be shown but it may also include other query
sentence elements. If there is no @ phrase, only the record id will be shown.

Take a look at the dictionary of the SALES file and see how the @ phrase contains
the names of the fields we want by default and also the ID.SUP keyword. We
modified this phrase when we created the LINE.VALUE and SALE.VALUE I-types
but we did not explore how this worked.

Where a report is directed to a printer by using the LPTR keyword discussed later,
the query processor's search for a default listing phrase is extended by first looking
for a phrase named @LPTR. If this is not found, the query processor uses the @
phrase as for reports directed to the screen. This extra stage allows us to set up a
different set of default fields for the printer and the screen, usually because printers
tend to be wider than the screen and can therefore fit more data. Our demonstration
file dictionaries do not have an @LPTR phrase.

2.12-4

96

Teach Yourself OpenQM

Qualified Display Clauses

Pick style systems extend the display clause to allow some elements of record
selection. This feature is disabled in QM by default but can be enabled with the
OPTION command. When enabled, the name of a field to be reported may be
followed by a relational, pattern match or sound match operator and a value.

LIST STOCK DESCR LIKE Pencil...

1s equivalent to
LIST STOCK WITH DESCR LIKE Pencil... DESCR

where the WITH DESCR LIKE Pencil... is the selection clause and DESCR is the
display clause

For multivalued fields, the qualified display clause is handled in the same way as the
WHEN keyword. Thus

LIST SALES CUST ITEM

1s equivalent to
LIST SALES WHEN ITEM

001 QTY

001 CUST ITEM QTY

The value part of a qualified display clause may contain special wildcard characters.
A left square bracket at the start of the value in an equality comparison substitutes
for any number of leading characters. Thus

LIST STOCK DESCR = [small

1s equivalent to
LIST STOCK WITH DESCR LIKE ...small DESCR

A right square bracket at the end of the value substitutes for any number of trailing
characters. Thus
LIST STOCK DESCR = Pencil]

1s equivalent to
LIST STOCK WITH DESCR LIKE Pencil... DESCR

Both of the above can be used together. Thus
LIST STOCK DESCR = [80g]

1s equivalent to
LIST STOCK WITH DESCR LIKE ...80g... DESCR

The caret (*) can be used anywhere in the value to substitute a single character. For
example
LIST STOCK ITEM = 1”1 DESCR

shows parts 101, 111, 121, etc

2.12-4

The Query Processor 97

Field Qualifiers

Any field in a display clause may be followed by one or more field qualifiers. These
override the dictionary definition of how the data is to be displayed. Used with the
EVAL keyword, these qualifiers can be used to replace the defaults taken from the
first field in the expression.

CONV "code" Applies an alternative conversion code.
LIST SALES DATE CONV "'D2/"
FMT "spec" Applies an alternative format specification.

LIST STOCK DESCR EMT "20T"

COL.HDG "text"

Specifies an alternative column heading. A multi-line
heading may be produced by inserting 'L' (including the
quotes) in the text. E.g. COL.HDG "Selling'L'Price".
LIST SALES DATE COL.HDG "Order-L"Date"

SINGLE.VALUE Treat the field as single valued. This is frequently used with
SINGLEVALUED EVAL.
MULTI.VALUE Treat the field as multi-valued. This is frequently used with
MULTIVALUED EVAL.
ASSOC "name" Treat the field as part of the named association. The quotes

must be included otherwise the phrase defining the
association will be substituted into the query.

ASSOC.WITH name

Treat the field as associated with the named field.

DISPLAY.LIKE name

Take on the display characteristics of the named field. This
can be used with other field modifiers.

2.12-4

98

Teach Yourself OpenQM

Arithmetic Operations

Any field in a display clause may be preceded by one of the keywords below to
calculate values to be displayed at the end of the report.

TOTAL Calculates the total of the reported values.
LIST SALES TOTAL SALE.VALUE
AVERAGE, AVG Calculates the average of the reported values.

LIST SALES AVG SALE.VALUE

PERCENT, PCT, % Calculates the percentage of the total that each value
represents. By default, 2 decimal places are shown. This can
be changed by following the keyword with a value in the

range O to 5.
LIST SALES TOTAL SALE.VALUE PCT SALE.VALUE
LIST SALES PCT 5 SALE.VALUE

MAX Reports the maximum value in the report column. Although
normally used with numeric data, applied to non-numeric
data the MAX keyword reports the "alphabetically last"

value.
LIST SALES MAX SALE_.VALUE

LIST STOCK MAX DESCR

MIN Reports the minimum value in the report column. Although
normally used with numeric data, applied to non-numeric
data the MIN keyword reports the "alphabetically first"

value.
LIST SALES MIN SALE.VALUE

LIST STOCK MIN DESCR

ENUM Counts the values in the column.
LIST SALES ENUM ITEM

CUMULATIVE Maintains a running total value for the named field.
LIST SALES TOTAL SALE.VALUE CUMULATIVE
SALE.VALUE

The AVERAGE and MIN calculations normally include all the data values in the
result. We might want to ignore empty (not zero) fields. This can be achieved by
following the field name with the NO.NULLS keyword. For example,

LIST SALES MIN PAYMENT NO.NULLS

produces a blank as the minimum because there is an unpaid sale.
LIST SALES MIN PAYMENT NO.NULLS

shows the minimum value of the orders hat have been paid.

The GRAND.TOTAL keyword can be used to insert text at the left of the total line of
the report. For example,

LIST SALES CUST ITEM QTY LINE.VALUE TOTAL SALE.VALUE
GRAND.TOTAL "Total"

This query simply inserts the text "Total" at the bottom left.

2.12-4

The Query Processor 99

The grand total can be moved to a page of its own by including the P control token in
single quotes inside the quoted grand total text.

LIST SALES CUST ITEM QTY LINE.VALUE TOTAL SALE.VALUE
GRAND.TOTAL "Total™"P""

2.12-4

100

Teach Yourself OpenQM

Reporting Options

There are many options to modify the format of a report. These include setting page
headings and footings, specifying margins and column spacing, and much more.

Suppression Keywords

These keywords allow us to suppress parts of a report. Many of them have synonyms
for compatibility with other products. Only the preferred name is shown here.

HDR.SUP

By default the query processor displays the query as the page
heading though this can be modified. This keyword suppresses
display of the page heading completely.

COL.SUP

Suppress display of column headings.

COL.HDR.SUPP

Suppress both page and column headings.

COUNT.SUP

Suppress the count of records processed at the end of the
report.

ID.SUP

The query processor automatically includes the default view of
the record id (@ID) as the first column in the report. This
keyword suppresses this column. It may be used because we do
not want to see the record id, because we have an alternative
definition of the record id, or because we want the id but not as
the first column.

ID.ONLY

Suppresses use of the default listing phrase resulting in a
display of only the record id.

DET.SUP

Suppress the details lines of the report, leaving just the totals.

Page Format Keywords

COL.SPCS n Specifies the number of spaces to appear between each column of
the report. By default, the query processor tries to insert four
spaces but will reduce this if the report is too wide.

MARGIN n Specifies the width of a left margin. This might be used to leave
space for ring binding holes, etc.

DBL.SPC Inserts a blank line between each record in the report.

NO.SPLIT Starts a new page wherever a record will not entirely fit on the
current page.

VERTICALLY Produces a vertical format report with one field per line.
Associated fields are still shown side by side. The query processor
automatically uses vertical mode if the report is wider than the
screen or printer. (Synonym VERT is easier to type!)

NO.PAGE Suppresses pagination on reports to the screen.

NEW.PAGE Each record starts on a new page.

2.12-4

The Query Processor 101

Panned Reports

As mentioned above, the query processor will switch into vertical report mode if the
fields listed in the display clause will not fit within the available line width. When
sending the report to the terminal, the query processor allows selection of panning
mode to retain the tabular report style. The user can move across the columns using
the left and right cursor keys or the letters L and R.

In the I-types module, we added NAME and DESCR to the SALES dictionary. If you
skipped that exercise, go back and do it now.

Ensure that you are using an 80 character wide display and then try this query:

LIST SALES SALE DATE CUST NAME ITEM DESCR QTY PRICE LINE.VALUE
SALE_VALUE PAYMENT.DATE PAYMENT ID.SUP

Note how the query processor has switched into vertical mode. The report is very
hard to read.

Now add the PAN keyword to the end of the query. Remember to use the command
editor rather than retyping the whole command.

LIST SALES SALE DATE CUST NAME ITEM DESCR QTY PRICE LINE.VALUE
SALE_VALUE PAYMENT.DATE PAYMENT 1D.SUP PAN

The report now shows only fields up to the description. Use the right cursor key or R
to move across the columns. You can then move back again using the left cursor key
or L.

This report is panning the entire output. Sometime we might want the order number
and date to remain fixed and just pan later columns. We can do this by moving the
PAN keyword be be immediately after DATE.

LIST SALES SALE DATE CUST NAME ITEM DESCR QTY PRICE LINE.VALUE
SALE_VALUE PAYMENT.DATE PAYMENT 1D.SUP PAN

If PAN appears either before or after all display clause elements, the entire report is
panned. If it appears in the middle of the display clause, all fields named before it are
fixed.

Scrolling

Sometimes we page through a report rapidly and the item we need disappears off the
top of the screen before we realise. It would be nice to be able to page back through
the report. We can do this by using the SCROLL keyword in our query. Try this with

LIST VOC SCROLL

You can page forwards through this report in the usual way but you will also find
that the up and down cursor keys work. Alternatively, you can use N for the next
page and P for the previous page. You can also go directly back to a page that has
already been displayed by entering the page number and pressing the return key.

When the SCROLL keyword is used, the query processor maintains a copy of the
report as it is generated so that you can page back through it. Looking at a previous
page does not regenerate the output, it merely recalls the original displayed data.

2.12-4

102

Teach Yourself OpenQM

Headings and Footings

Each page of a report can have a user defined heading and footing applied. These are
specified using the HEADING and FOOTING keywords, each of which is followed by
the quoted text to be used.

Example

LIST STOCK DESCR QTY HEADING "Stock Report"

The text supplied for a page heading or footing can include control tokens to insert
data such as page number or to control the layout of the text. These control tokens
must be enclosed in single quotes within the heading text.

B{n}

c
D

F{n}

Hn

I{n}

P{n}

R{n}
S{n}

Insert data from the corresponding B control code in a BREAK.ON or BREAK.SUP
option string. The optional single digit qualifier, n, defaults to zero if omitted.

Centres the current line of the heading text.

Inserts the date. The default format is dd mmm yyyy (e.g. 24 Aug 2005) but can be
changed using the DATE.FORMAT command.

Inserts the file name in a field of n spaces. If n is omitted, a variable width is used.

Inserts a gap. Spaces are inserted in place of the G control code to expand the text to
the width of the output device. If more than one G control code appears in a single line,
spaces are distributed as evenly as possible.

When a heading line uses both G and C, the heading is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

Inserts the record id in a field of n spaces. If n is omitted, a variable width is used.
Inserts a new line at this point in the text.
Suppresses pagination of the output to the display.

Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

Same as I{n}.

Insert page number. The page number is left justified in n spaces, widening the field if
necessary. If omitted, n defaults to one.

Inserts the time and date in the form hh:mm:ss dd mmm yyyy. The format of the date
component can be changed using the DATE.FORMAT command.

A single quote may be inserted in the heading by use of two adjacent single quotes in the text.

2.12-4

The Query Processor 103

Example

LIST STOCK DESCR QTY HEADING ""C"Stock Report"L""™ FOOTING
""LDG"Page *S*"

Directing a Report to a Printer

If the query sentence includes the LPTR keyword, the report is directed to a printer
instead of the terminal. Which printer is used depends on the way in which your
system is set up. There is a detailed section on printing later. For now, all we need to
know is that every QM session has 256 numbered print units (0 to 255) which
represent different destinations for printed output. The application usually has no
knowledge of where its printed output will go, only that it prints to a specific print
unit. Each print unit might represent a physically different printer, different paper
types in the same printer, different printer setting such as portrait or landscape
mode.

Using numbered print units instead of specifying the actual destination in our
application gives us greater flexibility. An application that prints sales orders, for
example, might always send them to printer 6 but this could be a different printer for
each user, a feature that is especially useful with auxiliary port printing where the
output is sent to a printer connected to the user's own PC. The association between a
print unit number and where the output goes is set using the SETPTR command,
often from the LOGIN paragraph or other initialisation script.

Used alone, the LPTR keyword causes the query processor to send its output to print
unit 0, the default print unit. Alternatively, the LPTR keyword may be followed by a
print unit number.

Report Styles

The query processor treats a report as being constructed from seven types of line:
Heading, Column heading, Detail, Subtotal, Total, Footing, Other.

Report styles allow users to attribute each of these classifications a colour for a
displayed report or a font weight for a report directed to a PCL printer. An additional
style, Exit, is used to determine how the screen is left on exit from the query
processor. If this is absent, the query processor turns off all display attributes.

Report styles are defined using an X-type VOC record where fields 2 onwards consist
of a line classification, foreground colour, background colour and font weight in the
form:

Heading=Bright blue,Black,Bold

Only the first character of the line classification name is used. Thus the above line
could be written as
H=Bright blue,Black,Bold

2.12-4

104

Teach Yourself OpenQM

The colour names are taken from the following list:
Black, Blue, Green, Cyan, Red, Magenta, Brown, White, Grey, Bright Blue,
Bright Green, Bright Cyan, Bright Red, Bright Magenta, Yellow, Bright White

Any non-alphabetic characters are ignored. Thus Bright Green can also be written
as, for example, Bright.Green, Bright-Green or BrightGreen. Numeric colour values
of 0 to 15 can be used where these correspond to the order of the colour names above.
Note that the colour palette used by AccuTerm may need to be amended from its
default settings to improve the rendering of the non-bright colours.

Font weights are taken from the list defined in SYSCOM $PCLDATA which defaults
to:
Ultra-Thin, Extra-Thin, Thin, Extra-Light, Light, Demi-Light, Semi-Light,
Medium, Semi-Bold, Demi-Bold, Bold, Extra-Bold, Black, Extra-Black,
Ultra-Black

Any non-alphabetic characters are ignored in the same way as for colour names.
Numeric font weight values in the range -7 to +7 can be used where these correspond
to the order of the font weight names above.

All components of a style definition are case insensitive.

Any classification not defined in the style record, or any omitted component within a
classification, takes on the values of the Other classification which itself defaults to
White foreground, Black background, Medium font weight if not defined.

Exercise

Create a VOC record named MYSTYLE that contains
1: X
2: H=bright blue
3: T=bright red

then execute a query

LIST SALES CUST ITEM DESCR QTY PRICE LINE.VALUE TOTAL
SALE_VALUE STYLE MYSTYLE

Sequence Numbering

Sometimes we might want to produce a monthly report that can be filed as a
continuously numbered set of pages that will aggregate to form an annual report.
Normally, a query report starts with page 1. We can create a control record that
maintains contiguous numbering over successive runs of the report. Note that this
feature only operates in conjunction with the LPTR keyword to direct the report to a
printer or file. It does not affect reports sent to the display.

For the purpose of this exercise, we will put this in the $ACC file that refers to our
account directory as a directory file.

First, ensure that the control record we are going to use does not exist by typing

2.12-4

The Query Processor 105

DELETE $ACC SQ

This command may report that the record is not found.

Now execute a query such as
LIST SALES PAGESEQ $ACC SQ LPTR 9

Then take a look at the results using SED
SED $HOLD P9
The report should begin at page 1. The PAGESEQ keyword has instructed the query

processor to maintain a record of page numbering in the named item, in this case the
$ACC file, record SQ. This will be created because it does not already exist.

Now repeat the query and look again at the file
LIST SALES PAGESEQ $ACC SQ LPTR 9

Then take a look at the results using SED
SED $HOLD P9

If all has gone to plan, this report starts at page 2. (Remember: To exit SED when
you have done this, type Ctrl-X followed by C).

Delimited Reports

The query processor can produce reports in various special forms. The CSV keyword
produces "comma separated variable" format output that can be read direectly into
some other software such as Excel.

To see this in action, try
LIST STOCK CSV COUNT.SUP

Note how items that contain commas ave automatically been enclosed in quotes. The
CSV keyword has an optional number following it to determine the rules to be
applied. The query above is identical to

LIST STOCK CSV 1 COUNT.SUP

which applies the rules set out in the industry standard CSV specification.
Alternatively,

LIST STOCK CSV 2 COUNT.SUP

quotes all non-null items except for numeric items that do not contain a comma.

For greater flexibility, the DELIMITER keyword allows alternative separators to be
used

LIST STOCK DELIMITER ™"™]" COUNT.SUP

2.12-4

106

Teach Yourself OpenQM

Breakpoints

A breakpoint occurs when the value of a specified field changes. Breakpoints are used
to trigger actions such as sub-totals, new page headings, etc. A breakpoint only
makes sense if the field used to trigger a breakpoint is also used to sort the data in
the report. The sort is not applied automatically because, as we have seen, there are
four different modes of sorting in QM (BY, BY.DSND, BY.EXP, BY.EXP.DSND). At

least one of these will always be present in a query using breakpoints.

A breakpoint is defined by including the BREAK.ON keyword before the field name.
For example
LIST SALES BY CUST BREAK.ON CUST SALE.VALUE

Whenever a breakpoint occurs, a line is printed with asterisks in the column for the
breakpoint field. This is particularly useful when a report uses multiple breakpoints.

Where the report includes arithmetic operations on fields (TOTAL, AVERAGE, etc),
the value is calculated at each breakpoint to give sub-totals , etc as well as the grand
total at the end of the report.

LIST SALES BY CUST BREAK.ON CUST TOTAL SALE.VALUE

(As you try these queries, don't forget that the command stack editor allows you to
walk back to the previous command with the cursor up key and then modify this
command. You do not need to retype the whole command).

The BREAK.ON keyword can also take qualifying text which will be printed instead
of the default asterisks. The text will be truncated if it is wider than the field in
which it is to appear.

LIST SALES BY CUST BREAK.ON "Total' CUST TOTAL SALE.VALUE

There is a simple but critical syntax difference between the default behaviour of QM
(and other Information style multivalue products) and Pick style systems where the
qualifying text goes after the field name:
flavours of QM regarding where this text appears.

LIST SALES BY CUST BREAK.ON CUST "Total"™ TOTAL SALE.VALUE

To ease migration, QM provides a mode of the OPTION command,

PICK.BREAKPOINT, to support this syntax. All examples in this module use the
default syntax.

Breakpoint Control Tokens
The breakpoint text may include control tokens in the form of uppercase letters
enclosed in single quotes within the text string. Where more than one token is used,

they can be enclosed in a single set of quotes or separately quoted.

As you try the example queries shown below, you only need to change the breakpoint

2.12-4

The Query Processor

control tokens and associated text. Although it will result in a slightly odd page

107

heading on the queries that don't have a heading below, you can simplify the editing
needed to get from one command to the next and the feature of each control token

will still be adequately demonstrated.

B{n} Startanew page, retaining the value of the breakpoint field for inclusion in the page

heading/footing by use of the B heading text option. The optional single digit qualifier,
n, allows collection of values from multiple breakpoints for inclusion in a composite
heading. If omitted, the value of n defaults to zero. Thus use of B alone is equivalent to
use of BO.

LIST SALES BY CUST BREAK.ON "Total"B"'" CUST TOTAL
SALE_VALUE HEADING "Customer "B""

Omit the subtotal line if there is only one line of detail for this breakpoint.

LIST SALES BY CUST BREAK.ON "Total"BD"'" CUST TOTAL
SALE_VALUE HEADING "Customer "B""

Emit a blank line in place of the breakpoint. Any text in the options string will be
ignored.

LIST SALES BY CUST BREAK.ON ™"™"L""™ CUST TOTAL
SALE.VALUE

Only show the value of the breakpoint field on the first detail line within the breakpoint.

LIST SALES BY CUST BREAK.ON "Total"LO"" CUST TOTAL
SALE.VALUE

Start a new page. This differs from B in that it does not capture the value of the break
point field for insertion into the page heading.

LIST SALES BY CUST BREAK.ON "Total"P"" CUST TOTAL
SALE.VALUE

Pick style systems do not show the line of hyphens above subtotals. For ease of
migration, the PICK.BREAKPOINT.U mode of the OPTION command can be used
make QM behave like Pick systems. For reports where the underline is required to
improve readability, the U breakpoint option can then be used to reinstate it. If the U
option is used when the PICK.BREAKPOINT.U option is not active, it causes the
underline to be suppressed.

LIST SALES BY CUST BREAK.ON "Total"U"" CUST TOTAL
SALE.VALUE

Print the breakpoint field value in place of the default two asterisks. The V control code
can be embedded in text into which the value will be inserted.
LIST SALES BY CUST BREAK.ON "Total "V*®" CUST TOTAL
SALE.VALUE
(Note the space after the Total in the breakpoint control text this time)

2.12-4

108

Teach Yourself OpenQM

The BREAK.SUP Keyword

Some of the queries that we have just done have the customer number in the page
heading. It would be nice to perform the breakpoint actions on this field but not
include this as a column in the report. We can do this by using BREAK.SUP in place
of BREAK.ON in our queries. For example

LIST SALES BY CUST BREAK.SUP ""B"" CUST TOTAL SALE.VALUE
HEADING ''Customer "B""

Suppressing the Grand Total Line

The grand total can be suppressed from a report by including NO.GRAND.TOTAL in
our query.

LIST SALES BY CUST BREAK.ON "Total'B" CUST TOTAL SALE.VALUE
HEADING "Customer 'B" NO.GRAND.TOTAL

Examination of the VOC shows that NO.GRAND.TOTAL is actually a phrase that
expands to

GRAND.TOTAL *r~"L""
This rather odd construct is what is needed on other multivalue products and is

consistent with how control codes work. The additional VOC item on QM makes the
query command more readable.

Summary of Display Clause Components

Prefix Data Item Suffix

AVG D-type CONYV "code"

PCT [n] I-type FMT "spec"

TOTAL A-type COL.HDG "text"
MAX S-type ASSOC "name"

MIN EVAL "expr" [AS xx] ASSOC.WITH field
BREAK.ON ["text"] DISPLAY.LIKE field
BREAK.SUP ["text"] SINGLE.VALUE
ENUM MULTI.VALUE
CUMULATIVE NO.NULLS

Each display clause element consists of an item from the middle column, optionally
preceded by at most one item from the left column and followed by any number of
items from the right column.

2.12-4

The Query Processor 109

Breakpoint Exercise

See how close you can get to the report below.

Order Details for Customer 1002 Ross, Alan
Sale. Product Description.............. Price Qty Line Total
12002 013 Pencil, bhlue 0.28 2 0.56
012 Pencil, red 0.28 3 0.84
13013 001 Pen, black 1.70 B 10.20
11.60
13 MAR 2009 Page 3

Each customer should start on a new page with the customer number in the page
heading and a blank line under the heading.

The example above has the customer's name too. Can you work out how to do this?
The orders for each customer should appear in ascending sequence of order number.

For each order, include the order number, product numbers and descriptions, unit
selling price, quantity and calculated line total value. Note that some column
headings are not the defaults.

There is a blank line between each order.

Print a total for all orders placed by each customer.

The page footer includes the date and page number.

The grand total line should be on a page of its own.

Do not print the count of records processed at the end of the report.

You might need to add some virtual attributes to the SALES file dictionary if they
have not been created in earlier exercises. Alternatively, you could use the EVAL
keyword within your query sentence.

You can develop this query on the command line using the command stack editor or
you can create a VOC sentence with each step on a separate line. We recommend
that you build it up in easy stages rather than trying to do the whole query in one
attempt.

2.12-4

110 Teach Yourself OpenQM

Solution

This is one possible solution as it might appear as a VOC sentence:

0001: S

0002: LIST SALES BY CUST BY SALE_
0003: BREAK.SUP ™""B"" EVAL "CUST:*
" :TRANS(CUSTOMERS, CUST ,NAME, *X=)"*

0004: SALE ITEM COL.HDG "Product™ _
0005: EVAL "TRANS(STOCK,ITEM,DESCR,"C=")" FMT ™"25T" COL.HDG
"Description’ _

0006: PRICE QTY TOTAL LINE.VALUE_

0007: GRAND.TOTAL "<"P=" _

0008: HEADER *Order Details for Customer "BL*" _

0009: FOOTER *"DG"Page =S*" _

0010: DBL.SPC ID.SUP COUNT.SUP

Line 2: We are reporting the SALES file and must sort by customer number if we
are going to break on this field.

Line 3: We want to break on change of customer number but, because we wish to
cut both the customer number and his name into the heading, we actually
perform the break on an evaluated expression which joins together the
customer number, three spaces and his name (which we get from the
CUSTOMERS file using TRANS).

Line 4: Display the order number and the product number (with a non-default
column heading).

Line 5: Display the product description in a suitable field width and with a
non-default heading.

Line 6: Display the selling price, quantity and calculated line value (using an
I-type that we created earlier.

Line 7: Move the grand total to a page of its own.

Line 8: Set up a page heading using our breakpoint value.

Line 9: Set up a page footing.

Line 10: Insert a blank line between each record, suppress the default display of
the order number (because we want to use SALE which has a better
column heading) and suppress the record count at the end of the report.

2.12-4

The Query Processor 111

Select Lists

Every QM session has eleven numbered select lists in which lists of record ids can
be built up for subsequent processing. The lists are numbered from 0 to 10. List 0 is
known as the default select list.

The query processor includes a SELECT verb which performs the selection phase of a
query but saves the generated list of record ids without producing a report. The
SELECT verb takes the same selection and sort clauses as LIST.

Many QM verbs, including all of the query processor verbs, check for an active
default select list and, if found, use this to provide a list of items to be processed.
Because of the dangers of unwanted effects if a list is left active by accident, the
command prompt changes to :: when the default select list is active.

The SELECT verb constructs list O by default. An alternative list can be built using
the TO clause to specify the target list number. Similarly, all query processor verbs
have an optional FROM clause to specify the source list.

Examples

SELECT STOCK WITH PRICE > 5
LIST STOCK

This pair of commands is equivalent to
LIST STOCK WITH PRICE > 5

There are times when we might perform a SELECT against one file to generate a list
of record 1ds to process in some other file.

SELECT STOCK WITH DESCR LIKE Pencil...
DELETE STOCK

This pair of commands deletes all the red items from our STOCK file. Don't do it!

The SSELECT verb constructs a select list in which the entries are sorted by record
id after any other sorting is performed. Thus
SSELECT STOCK BY PRICE

1s equivalent to
SELECT STOCK BY PRICE BY @ID

The SAVING Clause

We might want to build a select list by extracting data from a field other than the
record id. For example, our SALES file contains the customer number for each order.
This could be used to print out the customers' details.

2.12-4

112

Teach Yourself OpenQM

We can do this using the SAVING clause of the SELECT verb:
SELECT SALES SAVING CUST
LIST CUSTOMERS

Try the above pair of commands. Is there anything wrong with the results?

Customer 1002 appears twice because there are two orders for this customer. We can
eliminate duplicate entries in the select list by using the UNIQUE keyword in the
SAVING clause:

SELECT SALES SAVING UNIQUE CUST
LIST CUSTOMERS

Sometimes we may build a list from a field that might be empty in some records. The
null entries can be omitted from the select list by using the NO.NULLS keyword.
Although it makes no sense with our demonstration data, we could do

SELECT SALES SAVING UNIQUE CUST NO.NULLS

Handling Empty Select Lists

Try the following pair of commands to print a list of customers who have placed
orders for over 10.00
SELECT SALES WITH LINE.VALUE > "10"™ SAVING UNIQUE CUST
LIST CUSTOMERS

The report should show two customers. Try it again for orders of over 100.00, being
sure to do both commands even if you see what is going wrong.

All of our customers are reported. Why did this happen?

The SELECT found no records meeting the specified criteria and hence did not build
a list. The following LIST command, finding no active list, showed all the customers.

We can avoid this by using the REQUIRE.SELECT keyword in the LIST command.
To see what this does, you need only type the LIST command:
LIST CUSTOMERS REQUIRE.SELECT

This might be very useful in automated reporting procedures.

Building Select Lists from Multivalued Fields

For historic reasons related to compatibility with other multivalue database systems,
the SAVING clause does not normally treat multi-valued fields in any special way.
The value marks are just part of the data. Hence a pair of commands such as

SELECT SALES SAVING UNIQUE ITEM
LIST STOCK

does not work. Only the first product in each order is reported.

The SAVING clause has a further optional element to resolve this problem

2.12-4

The Query Processor 113

SELECT SALES SAVING UNIQUE MULTIVALUED ITEM
LIST STOCK

Removing Entries from a Select List

Sometimes we construct a select list and then want to remove from it all entries that
correspond to record ids in some other file. We can do this with NSELECT.

Our demonstration database contains no suitable data to try this, however, we can
use it to find the records in your VOC file that have been added since your account
was created from the template VOC file, NEWVOC.

SELECT VOC
NSELECT NEWVOC
LIST VOC

Clearing Select Lists

Sometimes we construct a select list and then want to throw it away. Perhaps we
realise that we used the wrong selection criteria.

The CLEARSELECT command can be used to discard any or all select lists.

CLEARSELECT discards the default list, list O.
CLEARSELECT n discards list n
CLEARSELECT ALL discards all active select lists

Saving Select Lists

The numbered select lists that we have been using so far are transient in nature.
They are automatically discarded when they are used and also if we leave QM.

We might want to save a select list for later use, perhaps just a few moments later or
maybe after many days.

Select lists can be saved in the $SAVEDLISTS file and later restored using the
SAVE.LIST and GET.LIST commands.

SAVE.LIST name {FROM n}
GET.LIST name {TO n}

Saving a list in this way destroys the numbered list from which it was saved. A
named select list remains in the $SAVEDLISTS file until it is explicitly deleted.
Although the QM DELETE command could be used to do this, there is also a
DELETE.LIST command:

DELETE.LIST name

2.12-4

114

Teach Yourself OpenQM

Merging Select Lists

Consider two separate select lists. There may be some overlap such that some
records appear in both lists. This can be represented diagrammatically as:

We can construct a new list from these two in three different ways:
e The union contains all items in either list but without duplicating the items
that are in both lists.
e The intersection contains those items that are in both lists.
e The difference contains those items in one list but not in the other. This could
be those in list 1 but not in list 2 or vice versa.

QM allows us to merge either numbered or named lists.

For numbered select lists, we use the MERGE.LIST command:

MERGE.LIST listl UNION list2 { TO list3 }
MERGE.LIST listl INTERSECTION list2 { TO list3 }
MERGE.LIST listl DIFFERENCE list2 { TO list3 }

For named lists, we use the LIST.UNION, LIST.INTER or LIST.DIFF commands:

LIST.UNION listl { list2 { list3 }}
LIST.INTER listl { list2 { list3 }}
LIST.DIFF listl { list2 { list3 }}

For compatibility with other products, the second source list (/ist2) and the target list

(list3) can be omitted from the command line in which case a prompt will appear.

Example

LIST.INTER REGION1.CLIENTS OVERDUE.ACCOUNTS OVERDUE.REGION1

The above command might take a list of clients in one business region and merge it
with a list of overdue accounts to create a list of overdue accounts in that region.

2.12-4

The Query Processor 115

The SEARCH Command

The SEARCH command allows us to build a select list by searching for records that
contain (or do not contain) a specific character string.

The SEARCH command takes all the same selection and sorting clauses as a
SELECT command but then prompts for one or more search strings.

By default, SEARCH builds a list of all records that contain any of the entered
strings. The command is case sensitive by default but supports a NO.CASE option
for case insensitivity.

The ALL.MATCH keyword can be used to select records that contain all of the search
strings.

The NO.MATCH keyword can be used to select records that do not contain any of the
search strings.

The SEARCH command takes no account of the field position at which the string is

found. It is usually used for searching files holding text records. One particularly
common use is searching program source text for references to specific items.

Example

SEARCH STOCK
STRING: Pencil

This would build a list of the STOCK records containing the word "Pencil".

Other Query Processor Verbs

COUNT

The COUNT verb processes a file to produce a count of records meeting the given
selection criteria.

Examples

COUNT STOCK
COUNT VOC WITH TYPE = "v"

2.12-4

116

Teach Yourself OpenQM

LIST.ITEM and SORT.ITEM
The LIST.ITEM verb shows the content of selected records as stored in the data file.
It can be useful for tracking down problems where data has been incorrectly stored.

SORT.ITEM is identical but sorts by record id after any other sort clauses.

Example

LIST.ITEM SALES "12003*"

12003

001: 14402
002: 1001
003: 012y013
004: 5y20
005: 28y28

Note how the date field (field 1) has no conversion applied to it and how the
multivalued fields are displayed with their embedded value marks.

LIST.LABEL and SORT.LABEL

The LIST.LABEL and SORT.LABEL commands allow easy generation of address
labels, etc. They take all the same clauses as LIST.

These commands prompt for entry of the label page shape:
Labels per line - The number of labels across the page
Labels per column - The number of lines per label
Label width - The number of characters across a single label
Label height - The number of lines of text per label
Indentation of first column
Horizontal space between labels
Vertical space between labels
Omit blank lines? (Y/N)

The full description of these commands in the QM Reference Manual explains how
the responses to these questions can be stored in the VOC for repeated use.

2.12-4

The Query Processor 117

REFORMAT

The REFORMAT command takes data from a specified file (and perhaps from other
files via virtual attributes) and creates a new file with fields in a specified order.

The name of the new file can be given on the command line with the TO option or, if
absent, provided in response to a prompt.

The fields named on the command line are used to construct the records for the new
file. The first field becomes the record id, the remaining fields are written as field 1
onwards in the order in which they are referenced.

Beware that the REFORMAT command writes the external format of the data as
defined by the dictionary of the source file. A date field, for example, would have any
conversion code specified in the dictionary applied to the transferred data. It would
probably be necessary to include alternative dictionary definitions without
conversion or formatting. Alternatively, field qualifiers such as CONV and FMT
could be used.

Example

Our demonstration database gives little scope for a good example, however, the
following shows the principles of REFORMAT:
REFORMAT SALES SALE EVAL "TRANS(CUSTOMERS, CUST, NAME, =X®)"
SALE.VALUE TO CUST.ORDERS

This example populates a new file named CUST.ORDERS (which must have been
created previously) with the order number as the record id and two data fields, one
holding the customer's name, the other holding the order value. Note that the order
value will be in external format unless we use CONV to suppress the conversion.

SUM

The SUM verb takes a file name and one or more field names. It produces a report of
the total of the specified field(s). A selection clause may be included.
SUM STOCK EVAL "PRICE * QTY"

2.12-4

118

Teach Yourself OpenQM

11

Alternate Key Indices

The QM file system identifies records within a file by a unique record key. A record is
retrieved by performing a mathematical transformation of the record key to the
location in the file (the group number) where the record should be stored. This
process is known as hashing and enables QM to retrieve a record with minimal
searching.

The effect of hashing is to distribute records across the file in an even manner.
Records written one after the other may be stored in widely separated parts of the
file. There is also no grouping together of records that hold similar data. Although
retrieval of a specific record using its record key will be very fast, it becomes difficult
to access data based on some other field value.

Consider our SALES file but scaled up to a realistic size with, perhaps, 100,000
orders where 10,000 customers have each placed 10 orders. Because of the hashing
process, if we want to find all the orders placed by a particular customer, we would
need to read all 100,000 records, rejecting those that are for other customers.
Clearly, as the file gets larger, this process becomes even more costly.

What we need is an index of orders for each customer. Using this, we can read one
index record and then go directly to the SALES records of interest. The performance
improvement using such an index is likely to be very large, often factors of tens of
thousands or greater.

QM allows us to create an alternate key index on one or more fields defined in the
dictionary. Once created and built, these indices are maintained completely
automatically and used by the query processor completely automatically. The
application requires no changes.

When a new record is added to the file, the appropriate index entries are added.
When a record is deleted from a file, the index entries are deleted. When a record is
modified, QM compares the new and old data to see if the indices are affected and
makes only the necessary changes.

There is a small but significant cost in maintaining an alternate key index. The more
indices we have, the greater the cost will be. However, the index can give us a
substantial improvement in performance when retrieving records which usually far
outweighs the costs.

We can create an index on any field defined in the dictionary. An index constructed
on a multivalued field will have one entry for each value and hence may be very
large.

2.12-4

Alternate Key Indices 119

Alternate Key Indices and Virtual Attributes

An alternate key index may be constructed on a calculated value from a I-type
dictionary item. Because the index is only updated when the data record is written,
there is an important rule to remember:

The virtual attribute expression must always return the same value
when evaluated for the same input data.

This will not be true if the expression uses the date (e.g. calculating an age from a
date of birth) or if it uses the TRANS() function to fetch data from another file.

Creating and Building Alternate Key Indices

Historically, construction of an alternate key index within a multivalue database has
always been a two stage process. First, the index must be created:

CREATE. INDEX Filename Field(s) { NO.NULLS }

The CREATE.INDEX command sets up the file structures to hold the index. The
optional NO.NULLS keyword causes the index to omit entries for records in which
the index field in empty. Creation of the index is very fast.

Once the index has been created, it can be built:
BUILD. INDEX filename TfTield(s)

The keyword ALL can be used in place of field names to build all indices for the
named file. The BUILD.INDEX command reads the entire data file and constructs
the index entries. Because the data must not change during the process,
BUILD.INDEX takes a lock on the file to hold off updates. For a large file, this may
take some time and is best performed overnight or at other quiet times. When the
build is complete, QM will use and maintain the index completely automatically.

QM extends the two stage create/build process found in other products by adding a
single command, MAKE.INDEX, that combines the two operations into a single
command.

New indices can be added to a file at any time. Indices can also be removed using the
DELETE.INDEX command:

DELETE.INDEX filename fTield(s)
Again, the ALL keyword can be used to delete all indices.

Sometimes is it useful to add indices prior to major activities such as end of year
processing and then remove them to avoid the cost of index updates for the rest of
the year.

To be effective, an alternate key index should have a large number of indexed values,
each of which leads to a small number of records. An index constructed on a simple
yes/no field or other item with a very small number of possible values is a complete
waste of time, partly because it is likely that reading the records referenced by either
index entry will require every group to be read, and partly because the index record

2.12-4

120

Teach Yourself OpenQM

itself will be very large and costly to update.

We can check how well an index works using the LIST.INDEX command:
LIST.INDEX filename field(s) mode

Again, the ALL keyword is available. The mode may be:

omitted displays a simple summary of indices in the file.

STATS display statistics showing the number of indexed values and the
minimum, maximum and average number of records referenced by

each entry.

DETAIL displays the above statistics together with details of each indexed

value.

Where a field is described by multiple dictionary entries, perhaps with different
conversion codes and format specifications, the alternate key index system recognises
that they are the same data and will automatically share any index.

Alternate Key Indices and the Query Processor

The query processor uses alternate key indices automatically. This includes query
processor commands, particularly SELECTs, executed from within application

software.

There are, however, some important rules to be aware of. Consider a query with
various combinations of conditions on indexed and non-indexed fields:

No selection clause

WITH indexed

WITH indexed OR non-indexed

WITH indexed AND non-indexed

WITH non-indexed AND indexed

WITH indexed AND indexed

An index has no benefits for a query that
has no selection clause and hence will not
be used.

A single selection condition on an indexed
field will take advantage of the index to go
directly to the relevant records.

This cannot use the index as the OR
relationship requires the entire file to be
processed for the second condition.

The index will be used to derive a list of
records meeting the first condition. These
records will be read, rejecting those that
do not meet the second condition.

The query processor applies selection
clauses left to right so this query would
not use the index and hence would be very
much slower than the previous example
even though it might produce the same
report.

A query only ever uses at most one index.
The index for the first condition will be
used and the second condition applied as

2.12-4

Alternate Key Indices 121

records are processed. A query of this form
will give best performance if the first
condition leads to fewer records than the
second condition.

NO.INDEX keyword present No attempt will be made to use alternate
key indices.

REQUIRE.INDEX keyword present The query will be aborted with an error
message if it cannot make use of an
alternate key index.

Indices created using the NO.NULLS keyword have an extra complication. Consider
a condition such as:

WITH field > 4

where field has an index which excludes NULL values. This query will use the index
to identify the records meeting the given condition.

A condition such as
WITH field < 4

however, will not use the index and hence may be very slow.
Why doesn't this query use the index?

The condition (field < 4) is satisfied by a null field. Records with the field null are
excluded from the index and hence would not be found if we used the index.

If we want to report the records with field < 4 but not null, the condition
WITH field # " AND field < 4

would use the index as it is not satisfied by a null field.

Exercise

Create a virtual attribute named WORD in the dictionary of the STOCK file. This
item will transform multi-word product descriptions such that each word is a
separate value stored in uppercase. The dictionary item should read:

1: 1

2: CONVERT(" ™, @VM, UPCASE(DESCR))
3:

4: Word

5: 12L

6: M

Use the query
LIST STOCK WORD

to check that this virtual attribute works. Each word of the description should
appear in uppercase on a separate line.

Use MAKE.INDEX to construct an index on this virtual attribute.

2.12-4

122 Teach Yourself OpenQM

Use LIST.INDEX in all three modes to examine this index.

Try a query such as
LIST STOCK WITH WORD = "PEN"

to show all items where the description contains a particular word.

2.12-4

Paragraphs 123

12

Paragraphs

We met the concept of sentences and paragraphs in the section of this course that
discusses the VOC file. In this module, we will look at how we can use these to
automate aspects of our application.

Sentences

A VOC sentence entry (S-type record) holds a single QM command which we can
then execute simply by typing its name. A sentence has S as the first character of
field 1 and the sentence itself in field 2.

Query commands are often very long. We can avoid continuously retyping queries
that we use frequently by setting up our own sentences. With very long queries, it
can simplify editing if the query sentence is broken over several lines (fields) in the
VOC by ending each line other than the last with an underscore. When the sentence
is executed, the lines are joined together, replacing each underscore with a single
space.

Example

CUST .ORDERS

: S

LIST SALES_

BY CUST_

BREAK.ON ""VB*"" CUST__

TOTAL SALE.VALUE

HEADING "Orders for customer "B""

U WNPE

In this example, each clause making up the query and each element of the display
clause has been placed on a separate line. We can execute this query simply by
typing its name (CUST.ORDERS).

Anything we type after the sentence name when we execute it is joined onto the end
of the sentence text. This allows us to save partial sentences where the final
components are added from the command line. Look at the EDIT.LIST sentence as
an example.

We could add a sentence such as that below to list dictionaries

LD
1: S
2: LIST DICT

2.12-4

124

Teach Yourself OpenQM

Paragraphs

Whereas a sentence is a single stored command, a paragraph is a series of
commands. The whole series is executed simply by typing the paragraph name.

A paragraph has PA as the first two characters of field 1. The remaining lines (fields)
are the sentences making up the paragraph. As with sentence entries, any individual
sentence in the paragraph can be extended over multiple lines by ending each line
except the last with an underscore.

Example

We might frequently need to produce a report of customers who have placed orders
with us. This could be done using a simple paragraph:

CUST.RPT

1: PA

2: SELECT SALES SAVING UNIQUE CUST

3: LIST CUSTOMERS NAME

The sentences in a paragraph may include anything that could be executed from the
command prompt, including references to VOC sentences and other paragraphs.
There are also several extra constructs that we can use in paragraphs that we will
meet in this module.

Comments

Paragraphs may be made more readable by inserting blank lines to separate sections
of processing and by indenting commands that are part of the loop constructs
described later. Even quite short paragraphs may be a total mystery to other users
(or even the developer after a few weeks!). We can add comment lines to paragraphs
to explain the processing and each maintenance.

A comment line starts with an asterisk as the first non-space character. This must be
followed by at least one space. Any further text on the line is totally ignored (Well,
almost! We will come to that later).

Our earlier customer report paragraph could have a helpful comment added:

CUST.RPT

1: PA

2: * List the names of customers who have placed orders
3: SELECT SALES SAVING UNIQUE CUST

4: LIST CUSTOMERS NAME

There is actually a slightly better way to do this example. The first line can have
comment text following the PA type code without the need for an asterisk:
CUST.RPT
1: PA List the names of customers who have placed orders
3: SELECT SALES SAVING UNIQUE CUST
4: LIST CUSTOMERS NAME

2.12-4

Paragraphs 125

Any lengthy paragraph should be liberally scattered with comments. An effective
comment should explain what the subsequent sentences do and any necessary
pre-conditions. Comments that just restate the sentence in English are virtually
useless.

Inline Prompts

Paragraphs frequently need to obtain information from the user or elsewhere to form
part of the executed commands. This is achieved using inline prompts.

The general form of an inline prompt is
<<control,text,option>>

where
control determines when, where and how the prompt appears.
text is the prompt text to be used.
option specifies validation to be applied to the data.

There must be no spaces within the inline prompt structure unless they form part of
the control, text or option components.

All three components are optional though either a control or text will always be
present. There may be multiple control components. The inline prompt is processed
left to right. All elements that can be interpreted as controls are use in that way. The
next element is taken to be the text and any remaining item is the option.

The simplest inline prompt has only a text element. Edit your VOC to add the
paragraph below:

MYPARA

1: PA

2: LIST <<File>>

Execute this paragraph by typing its name. It will prompt for a file name. Enter the
name of one of your files (STOCK, SALES, CUSTOMERS, VOC, etc).

Notice how the data you entered in response to the prompt has been substituted for
the inline prompt construct.

Modify your paragraph to read:
MYPARA
1: PA
2: SELECT <<File>>
3: LIST <<File>>

(OK, the SELECT serves no useful purpose but we are trying to show a feature of
inline prompts).

Execute it again. Does it behave quite as you expected?

2.12-4

126

Teach Yourself OpenQM

Wherever an inline prompt uses exactly the same prompt text as one that has
already been executed in the paragraph, the prompt is not repeated. The previous
value is simply substituted again.

We can make use of this feature to avoid repeated prompts from paragraphs that
need to use the data several times.

Example

CUST.RPT

1: PA

2: SELECT SALES SAVING UNIQUE CUST_

3: WITH DATE AFTER <<Start date>>

3: LIST CUSTOMERS NAME_

4: HEADING "Clients ordering after <<Start date>>"

Notice here that the prompt text can contain spaces. Notice also that the inline
prompt substitution occurs even though it is part of a quoted string.

Inline prompts are handled before any other command processing. This leads to a
rather strange effect. A comment line that contains an inline prompt will perform the
prompt and then examine the line, find it to be a comment and ignore it.

This turns out to be a useful feature because it allows us to use inline prompts in
comments to collect all the prompt responses at the start of the paragraph before any
processing.

We might, for example, have a paragraph that produces overnight reports:
OVN.REPORTS
1: PA
2: * <<Target fTile>>
3: RUN OVN.PROCESS
4: OVN.RPT <<Target fTile>>

The first program executed by this paragraph might run for several hours. We do not
have to stay at our terminal waiting for the prompt on line 4 to appear.

We could also use this feature to ask for the prompt responses in a more logical order
to that in which they are used within the paragraph.

Inline Prompt Controls

The control element of an inline prompt determines when, where and how the
prompt appears. It may consist of multiple elements selected from those described
below, separated by commas. There are restrictions about which elements may be
used together but they are obvious from the functions of the controls.

2.12-4

Paragraphs 127

Controlling the Terminal

The inline prompt may include any combination of the following control elements:
@(CLR) Clears the screen.

@(col,line) Moves the cursor to the given screen positions. The top left of the
screen is 0,0.

@(BELL) Sounds the terminal "bell".

Example
<<@(CLR),@(5,2),Enter filename>>

This prompt clears the screen and positions the prompt text at column 5 of line 2.

Repeated Prompts

The R control element causes the prompt to be repeated until a blank response is
entered. The inline prompt is substituted with a space separated list of the responses
entered.

Example
LIST STOCK <<R,Part number>>

This will ask for a list of part numbers. When a blank response is entered, the LIST
command is executed with the list of part numbers in place of the prompt construct.

Strictly, the record ids in the above example should be quoted in case they match the
name of a VOC or dictionary item. We can achieve this using an extended form of the
R control element. This has the character sequence to appear between each list entry
in round brackets following the R. Thus we need to use a control element of R('").

This will insert the quotes between the list items but we also need quotes at either
end. These are simply put around the inline prompt:

LIST STOCK "<<R(" %),Part number>>*

This may look like a very odd way to do things but it is a simple and very flexible
mechanism. We can produce quoted lists, comma separated lists, etc.

Taking Data from the Command Line

Consider our first inline prompt example:
MYPARA
1: PA
2: LIST <<File>>

It would be nice if we could supply the filename on the command line by typing, for
example:
MYPARA ORDERS

2.12-4

128

Teach Yourself OpenQM

Although not really a prompt, the inline prompt system allows us to do this using the
C control element. The command line is considered to be made up of a series of
elements separated by spaces. The filename in this case is the second element on the
command line and we can access this by changing our paragraph to use an inline
prompt such as:

MYPARA
1: PA
2: LIST <<C2,File>>

Modify your paragraph to work this way and check that it works.

The prompt text can be omitted in this case, leaving just <<C2>>, however, it does
aid readability of the paragraph and we may want to reuse this prompt later by
name.

Of course, now if we type the paragraph name with no following filename we get an
error because the second element if the command line is a null string leaving the
command on line 2 of the paragraph without a filename.

Change your paragraph to read

MYPARA
1: PA
2: LIST <<12,File>>

Now try it both with and without a filename to find out what the I control does.

There is a third variation as shown in the summary below:

Cn Take the n'th space separated element from the command that started the
paragraph or sentence containing the inline prompt.

In As Cn but if the result is null, prompt for the value.

Sn Take the n'th space separated element from the command line typed by
the user. This is rarely of use.

QM extends the Cn control code from its definition in other systems to allow
Cm-n Returns tokens m to n.
Cn+ Returns tokens n onwards.

C# Returns the number of tokens in the command line.

All formats of the C control code may include a default value. For example,
<<C4:SALES>>

The default value will be applied if the prompt would otherwise return a null string.

2.12-4

Paragraphs 129

Obtaining Values from a File

The inline prompt mechanism can also be used to fetch data from a record stored in a
QM file. It can substitute the whole record, a field, a value or a subvalue. The
corresponding control element formats are shown below.

F(filename,id) Substitute entire content of specified record

F(filename,id,fld) Substitute content field fId of specified record

F(filename,id,fld,val) Substitute content field fid, value val of specified
record

F(filename,id,fld,val,subval) Substitute content field fId, value val, subvalue
subuval of specified record

Example
LIST STOCK @ EVAL "PRICE * <<F(VOC,TAX.RATE,b2)>>"

where the VOC record is

TAX_RATE
1: X
2: .175

This example adds a tax column to the STOCK file report. The tax rate is taken from
an X-type VOC record.

Use of Select Lists

An inline prompt can be used in a paragraph to process elements from a select list by
use of the L control code.

Ln Extracts the next item from select list n. If n is omitted, it defaults to zero.
When the select list is exhausted, a null string is returned.

Re-prompting for Known Text

There are times when we want to repeat a prompt even though we have already
prompted for the information. The most common need for this is prompts that appear
inside the loop constructs we will discuss later.

The A control element causes an inline prompt always to prompt, even if the text
matches that of a previous prompt.

For example,
LIST <<A,File name>>

would always prompt, even if we had executed this prompt or another with the same
text earlier.

2.12-4

130

Teach Yourself OpenQM

Special Control Codes

SUBR(name) Execute catalogued QMBasic function name, returning the result of
this function as the value of the inline prompt.

SUBR(name, argl, arg?) Execute catalogued QMBasic function name, passing
in the given arguments and returning the result of
this function as the value of the inline prompt. Up to
254 arguments may be specified. These may be
enclosed in quotes if necessary to avoid any syntactic
ambiguity.

SYSTEM(n) Returns the value of the QMBasic SYSTEM(n) function.

@uar The name of an @-variable, including user defined names (see the
SET command), may be used to retrieve the value of the given
variable. A default value may be applied by use of a prompt of the
form:

<<@name:value>>

The default value will be applied if the prompt would otherwise
return a null string.

$var The name of an operating system environment variable may be
used to retrieve the value of the given variable. A default value
may be applied by use of a prompt of the form:

<<$name:value>>

The default value will be applied if the prompt would otherwise
return a null string.

Examples

To save a select list with a name based on the user's QM user number:
SAVE.LIST LIST<<@USERNO>>

To display the QM licence number:
DISPLAY Licence number <<SYSTEM(31)>>

Clearing Prompts

The CLEARPROMPTS command causes QM to discard all inline stored prompt
responses.

Inline Prompt Options

The option element of an inline prompt allows some simple validation of the response
entered by the user. If the response fails to pass the validation, the prompt is

2.12-4

Paragraphs 131

repeated. The error message produced is not very useful to an inexperienced user and
cannot be modified.

Validation by Conversion

The option may be specified as a conversion code as used in dictionaries. This must
be enclosed in round brackets.

For example,
LIST SALES WITH DATE AFTER <<Start date,(D)>>

QM attempts to convert the response entered at the prompt to internal format using
the given conversion code, a date conversion in this example. If the conversion is
successful, the original response entered (not the converted value) is substituted for
the prompt construct.

Validation by Pattern Matching
The option may be specified as a pattern match expression as found in the query
processor LIKE operator, the editor M search or the MATCHES programming

language operator. The pattern expression is simply used as the option.

Example
LIST STOCK <<Part no,3N>>

Multiple alternative patterns may be given, separated by the word OR.

Example
LIST SALES <<LPTR for printer,“LPTR®" OR *">>

The above example accepts only LPTR or a null response to the prompt.

Aborting an Inline Prompt

Sometimes we want to abort a paragraph or sentence when it is asking for a reply to
an inline prompt. We can do this by entering the word QUIT in uppercase.

2.12-4

132

Teach Yourself OpenQM

The DATA Statement

Inline prompts allow us to get information to substitute into command lines in stored
sentences and paragraphs. The DATA statement lets us pass data into commands
that would normally prompt for user input. The two can be used together as we will
see.

We might have a paragraph that runs ED to perform a simple scripted edit that
modifies a edits a file to replace an embedded $$DATE$$ marker with the current
internal form date:

1: PA

2: ED TFILE SCRIPT

3: DATA L 3DATESS

4: DATA C/3$$DATESS/<<@DATE>>/

5: DATA FI

You may have as many DATA statements as you like following a command in a
paragraph. Note how the second DATA statement in this example uses an inline
prompt to get the internal form date.

The DATA statement is useful in paragraphs that run commands that would
normally prompt for input and in phantom processes (which have no terminal for
data entry).

You might think that the data should be queued up before the command to which it
applies. So that the paragraph more closely represents the order in which things will
happen, the command processor looks ahead for DATA statements as its executes
each command in the paragraph, storing the results in a queue for use in subsequent
input actions.

If you are a programmer, this queue is the same one that the QMBasic DATA
statement can access.

As we have seen above, a DATA statement can include an inline prompt. The
converse of this is that data queued using the DATA statement cannot be used to
satisfy an inline prompt.

The CLEARDATA Command

The data from DATA statements remains in the queue until it is processed by an
input request from some program or we return to the command prompt.

Consider a paragraph that runs a program to perform end of year processing. After
the main processing is complete, the program asks if the content of the live data files
should be copied to a set of archive files. Because in this use of the program the
developer always wants to copy the data, he has included the response to the
question in the paragraph.

1: PA
2: RUN EOY.PROCESSING
3: DATA'Y

2.12-4

Paragraphs 133

The paragraph will then go on to delete the certain records from the live data files.
To make this step optional, the developer has let the DELETE command ask
whether it should continue. So the complete paragraph becomes

PA

RUN EOY.PROCESSING

DATA' Y

SELECT TRANSACTIONS WITH CODE = "7"
DELETE TRANSACTIONS

AR WNPE

This looks like it should do what we want. But, what happens if the
EOY.PROCESSING program fails before it has asked about archiving the data? The
"Y" response to this question is still in the queue. The user is ready to enter N in
response to the confirmation prompt for the DELETE, but it never appears as the
queued "Y" is used instead. We have lost our data!

We need a way to prevent this sort of disaster from happening. The CLEARDATA
command is one solution. This discards all queued data and should be included after
any use of the DATA statement where the program might terminate without
processing all of the queued data.

Our paragraph now becomes:

- PA

RUN EOY.PROCESSING

DATA Y

CLEARDATA

SELECT TRANSACTIONS WITH CODE = "7
DELETE TRANSACTIONS

OUTAWNPE

2.12-4

134

Teach Yourself OpenQM

Conditional Processing in Paragraphs

So far, our paragraphs have all started at the top and executed each command in
turn until they arrive at the bottom. There are times when we need to include
conditions around execution of one or more commands. We can do this with the IF
statement.

IF condition THEN sentence

Unlike its programming language equivalent, the IF statement does not have an
ELSE clause and can only condition a single sentence. We can work our way around
these limitations very easily as we shall see.

The condition part of the IF statement uses a relational operator to compare two
values. The values may be the results of inline prompts, constants or system supplied
items known as @-variables.

Example

IF <<Print report?>> = "Y" THEN LIST ORDERS LPTR

Although all @-variables can be used in an IF statement, the most commonly used
ones are:

@ABORT.CODE Used in the ON.ABORT paragraph, this identifies
why the process was aborted: 1 = application
triggered abort, 2 = user requested abort, 3 =
internal error detected.

@DATE The current date in internal form.
@DAY The day of the month (1 - 31).
@LOGNAME The user's login name.

@MONTH The current month (1 - 12).

@SYSTEM.RETURN.CODE Most QM commands leave status information in this
variable to allow paragraphs to check if the action
was successful. The query processor verbs set this to
the number of records processed.

@TIME The current time in internal form.
@TERM.TYPE The current terminal type (e.g. vt100).
@TTY The terminal device name. There are several special

values that may appear here. For example, in a
phantom process this contains "phantom". See the
QM Reference Manual for a complete list.

@USERO to @USER4 User defined. Initially zero, these may be used by
user applications in any way the designer wishes.
@USER.RETURN.CODE User defined. Intended as a user application

equivalent to @SYSTEM.RETURN.CODE, this
variable is initially zero and is never changed by QM.

@USERNO QM user number.
@WHO The name of the current QM account.

2.12-4

Paragraphs 135

@YEAR The last two digits of the current year.

The relational operators are:

= EQ EQUAL Equal to

NE <> NO Not equal to

> GT GREATER |AFTER Greater than

< LT LESS BEFORE Less than

>= GE => Greater than or equal to
<= LE =< Less than or equal to
Example

Consider a paragraph to list all customers who have ordered a specific part:

1: PA
2: SELECT SALES WITH ITEM = <<Part>> SAVING UNIQUE CUST
3: LIST CUSTOMERS

What will happen if there are no records meeting the selection criteria? No list is
constructed so the LIST command lists all of the customers.

One way around this would be to condition the LIST:

1: PA
2: SELECT SALES WITH ITEM = <<Part>> SAVING UNIQUE CUST
3: IF @SYSTEM.RETURN.CODE > O THEN LIST CUSTOMERS

Note carefully that inline prompts are expanded as the first step in processing a
command. Thus a command such as
IF <<Produce report?>> = "Y" THEN LIST ORDERS <<LPTR for
printer, “LPTR®" OR "">>
will ask both of the inline prompt questions before determining whether the repor is
actually required.

2.12-4

136

Teach Yourself OpenQM

Branching in Paragraphs
The GO statement allows us to jump around one or more sentences in a paragraph.

Consider a paragraph to tidy up the $HOLD file by deleting items over 30 days old.
The DTM item in this example would be an I-type dictionary item that returned the
date of the last modification to the item.

TIDY.UP

1: PA

2: SELECT $HOLD WITH DTM < EVAL "DATE() - 30"
3: DELETE $HOLD

4: DATA' Y

Again, we have the possibility that no records are selected. We need to condition both
the DELETE and the DATA statement. Although there are perhaps better ways to
do this, we can use a conditional jump:

TIDY.UP

: PA
SELECT $HOLD WITH DTM < EVAL "DATE() - 30"
IF @SYSTEM.RETURN.CODE < 1 THEN GO SKIP
DELETE $HOLD
DATA' Y
SKIP:

OUTAWNPE

The GO statement skips forward through the paragraph until it finds a line
commencing with the specified label. The label must start in the first column of the
line and has two possible formats. It may be entirely made of digits or, as is more
usual, start with a letter followed by further letters, digits, dots and dollar signs. The
label name must be followed by a colon.

If there is a sentence on the same line as the label, there must be at least one space
after the colon.

Note that the action of GO is to skip forward to the label. The GO statement cannot
be used to jump backwards.

By using IF and GO together we can construct the effects of an ELSE clause:

IF condition THEN GO LABEL1
sentence(s)
GO LABELZ2

LABEL1:
sentence(s)

LABEL2:

2.12-4

Paragraphs 137

Loops

Paragraphs frequently contain sequences of sentences that we wish to execute
repeatedly until some terminating condition occurs. The LOOP / REPEAT construct
allows us to do this.

1: PA

2: LOOP

3: IF <<A,Customer>> = """ THEN GO END
4: LIST ORDERS WITH CUST = <<Customer>>
5: REPEAT

6: END:

This paragraph will ask repeatedly for customer numbers, displaying the orders for
the given customer, until a blank response is entered.

Note the need to use the A control element in the first inline prompt. Without this,
the paragraph would loop endlessly reporting the same customer.

The use of indentation as in the example above can aid readability of loops.

A single paragraph may contain many separate LOOP / REPEAT constructs and one
loop may contain another.

Loop constructs can be used with the inline prompt L control code to process
elements from a select list:

LOOP

IF <<L,ID>> = """ THEN STOP

MYPROG <<ID>>

REPEAT

Note how the L option always reads the next list entry. The A control code is not
needed in this example.

2.12-4

138

Teach Yourself OpenQM

Aborting Paragraphs

A paragraph ends when it arrives at the bottom. Jumping to the END label in the
earlier example is a common way to terminate from earlier lines though QM
supports the STOP command to terminate the paragraph in which it is executed.

When the paragraph terminates, control returns to whatever started the paragraph.
This might be back to the command prompt or return to another paragraph, a menu,
a program, etc.

The ABORT statement allows us to terminate all processing for the user, returning
to the command prompt. It should only be used when error conditions are detected as
it will also execute any ON.ABORT paragraph which might also terminate the QM
session.

Example
1: PA
2: RUN OVERNIGHT.PROCESS
3: IF QUSER.RETURN.CODE # O THEN ABORT
4: etc....

User Defined @-Variables

QM allows users to define their own @-variables that may allow a task that would
require a program to be written in other multivalue systems to be achieved by a
paragraph in QM. User defined @-variables can also be accessed by QMBasic
programs via the !ATVAR() and !SETVAR() subroutines that are described in the QM
Reference Manual.

A user defined @-variable is created using the SET command:
SET variable value

where value is the value to be stored. Quotes should not be used unless they are part
of what is to be stored. Leading and trailing spaces in value are removed; embedded
spaces are retained
For example,

SET COUNT 10

SET CLIENT George Thomas

The variable name may optionally have a leading @ character. The value can then be
accessed using the inline prompt constructs referenced earlier in this section.

The SET command can also evaluate simple arithmetic expressions by use of EVAL.
SET COUNT EVAL <<@COUNT>> - 1

Combining this with other techniques we have seen in this module, we can construct
a simple loop such as
SET COUNT 10
LOOP
.-..do something...

2.12-4

Paragraphs

SET COUNT EVAL <<@COUNT>> - 1
IF @COUNT = O THEN STOP
REPEAT

139

Note that the IF command does not need the inline prompt structure as, unlike all

other commands, it automatically substitutes @-variables.

2.12-4

140

Teach Yourself OpenQM

13

Menus

A menu is a numbered list of options, each of which will execute some associated
command.

QM includes a simple editor (MED) that allows very rapid construction of menus. To
see this in operation, we will construct a menu that allows us to list the three files in
our demonstration database. You may choose to extend this menu later to add a
route into the programs constructed in later sections of this course.

To start the process of building a menu type
MED

You will be asked which file you would like to keep the menu in. We will put this in
the VOC so enter VOC in response to the prompt or simply press the return key as
this is the default file. Menus that are stored elsewhere would require an R-type
VOC entry to link to them.

You now need to enter the menu name. We will use MYMENU. Answer Y in
response to the prompt confirming that you wish to create a new menu.

The screen changes to show five lines that affect the entire menu:
Title This is the title line to appear on the menu screen.

Subr is the name of an optional subroutine that makes run time decisions
about which options are to be displayed.

Prompt is the prompt text to appear on the menu.

Exits are codes that can be entered at the option prompt to return to a
parent menu, paragraph, etc.

Stops are codes that can be entered at the option prompt to abort the menu
processor completely.

As you work through the steps below, notice how the short help message at the

bottom of the screen changes from line to line. You can also press F1 for extended
help.

Enter "Sales System Main Menu" on the title line and press the return key. The
cursor moves down to the next item. If you make a mistake, you can always use the
cursor keys to move back up a line and correct it.

We don't yet know how to write QMBasic subroutines so we will leave the Subr line
empty. All users will see all options that we define on the menu. You can find out
about access control subroutines later from the QM Reference Manual.

We will use the default prompt, exit and stop settings so these can also be left blank.

You should now be on the line of hyphens. Press return to create the first menu
option.

Text is the text to appear on the menu. The option number is generated

2.12-4

Menus 141

automatically. Enter "List the stock file" and press the return key.

Action is the command to be executed when this option is selected. Enter "LIST
STOCK;" and press the return key. Note the semicolon after the command. This
causes the menu processor to display a continuation prompt before returning to the
menu. We need this because we want the user to read the displayed report. Menu
items that simply run some action that does not display data would usually not have
the semicolon so that the user is returned to the menu with no intervening
confirmation prompt.

Help is the optional one line help message to be displayed if the user enters an option
number followed by a question mark. Put something appropriate in here and press
return.

Because we are not using an access control subroutine, leave the Access and Hide
fields blank.

Now go on to create options to list the CUSTOMERS and SALES files in the same
way.

Once you have done this and you are on the line of hyphens after the final item,
examine how your menu would look by pressing F4. Then press any key to return to
the menu edit screen.

The key bindings of MED are based on those of SED. If you cannot remember them,
the F1 help has a list. Enter Ctrl-X S to save the menu and Ctrl-X C to exit from
MED. If you accidentally hit return too many times and have partially created option
4, this will be removed when the menu is filed.

Now that you are back at the command prompt, test your menu by typing
MYMENU.

2.12-4

142

Teach Yourself OpenQM

14

Printing

QM applications do not drive printing devices directly. Instead they reference
numbered print units with no knowledge of where the output will actually go. This
leads to a very flexible printing system where the output can be sent to a printer, a
file or the user's screen. QM uses the underlying Print Manager on Windows or the
operating system spooler on other platforms to perform output to printer devices.

Each QM session has its own pool of print units, numbered from 0 to 255. In most
cases, if a print unit is not specified in a command, printer 0, the default printer, is
used. Application developers are free to use these print units in any way that meets
their needs. They might correspond to different printers, different paper types on the
one printer, selection of portrait or landscape mode, etc. Although it is unlikely, all
256 print units can be used simultaneously.

Setting Print Unit Characteristics

Unless otherwise defined, print unit 0 is directed to the system's default printer and
all other print units are directed to the SHOLD file. Almost all applications will need
to modify this default behaviour by using the SETPTR command. This may be
executed from the MASTER.LOGIN paragraph in the QMSYS account (to affect all
users), from the LOGIN paragraph of a specific account (to affect only users of that
account), or from within the application.

The SETPTR command defines the shape of the printed page (width, depth,

margins), the destination and various options relating to the treatment of the output.
SETPTR unit {, width, depth, top.margin, bottom.margin, mode {
, options }}

A print unit can operate in several modes:

Mode 1 directs the output to the underlying operating system print processor,
usually to send it to a physical printer.

Mode 3 formats the data ready for printing but directs it to a record in the
$HOLD file from where it may subsequently be viewed on the screen with a
suitable editor or sent on to a printer when required. The hold file is most
commonly used to defer printing until a process has completed, to gather
diagnostic output, or for testing. The name of the file used by mode 3 can be set
using the AS option of the SETPTR command which includes the ability to add a
rotating sequence number for generate a different name for each output job. This
sequence number can be determined using the QMBasic GETPU() function or the
@SEQNO variable.

Mode 4 directs the output to the stdout (standard output) file unit.

Mode 5 buffers the data in the $HOLD file and then sends it to the terminal
when the printer is closed, prefixing it with the control code to enable the
terminal auxiliary port and disabling this port on completion of the print. This
feature relies on the meb (aux on) and mc4 (aux off) terminfo items being set
correctly.

Mode 6 combines the actions of modes 1 and 3, creating a file and also printing

2.12-4

Printing 143

the data.

A print job commences when the first line of output is sent to the printer and
normally terminates when the program closes the print unit either explicitly or
implicitly by returning to the command processor. It is possible to merge output from
several successive print programs into one job by use of the PRINTER command. The
KEEP.OPEN option used before output commences followed by the CLOSE option
after the final program completes treats the entire sequence as a single print job.

Pick Style Form Queues

Although Pick style systems support the ON clause of the Basic PRINT statement,
applications that need only one printer at a time more usually determine the output
destination by selecting a numbered form queue. As an aid to migration, QM
provides limited support for Pick style form queues by use of the SP.ASSIGN
command. Internally, QM needs to relate form queue numbers to the equivalent
SETPTR options and this is managed by a mapping file, SFORMS, using the
SET.QUEUE command.

The SET.QUEUE command is very similar to SETPTR but instead of assigning the
specified characteristics to a numbered print unit, they are stored in the $FORMS
file with a numeric id that corresponds to the form queue number. Subsequent use of
the SP.ASSIGN command picks up the form queue details from the $FORMS file and
applies these to printer O by internal use of SETPTR. The R option of SP.ASSIGN
allows the form characteristics to be applied to a different print unit.

Whereas each QM process has its own set of 256 numbered print units, form queue
numbers and their settings are normally shared across all QM sessions because the
same $FORMS file is visible to all accounts. By creating alternative $FORMS files
and modifying the VOC F-pointer, it is possible to maintain separate form definitions
for specific accounts or groups of accounts.

For more detailed information on printing, see the @M Reference Manual.

2.12-4

144

Teach Yourself OpenQM

15

Introduction to QMBasic Programming

The QMBasic programming language used by the QM database system is easy to
learn and allows very rapid development of application software. Although derived
from the original BASIC language of the 1960's, it has many powerful features that
fit in with today's database technology.

This course introduces the major features of the language. There are many more
components that we do not cover. Programmers will be able to find these for
themselves by examination of the QM Reference Manual.

The precise syntax and semantics of the Basic language used by the different
multivalue database products varies. These training notes assume that you are using
QM in its default modes. To find out more about the programming language
compatibility options within QM, see the $MODE compiler directive in the QM
Reference Manual.

Uses

QM provides a wide range of built-in tools for creating and processing data. There
are times, however, when the standard tools will not meet our requirements and we
need to develop our own programs. These might include:

e Application front end interfaces
e Batch processing activities

e Complex reports

Because QMBasic programs can be mixed with other QM concepts such as
paragraphs and menus with no user visible difference in operation, complex
applications can be built by choosing the most appropriate way to implement each
area. Much of QM is itself written in QMBasic.

The QMBasic language provides a totally device independent method of handling
terminals so that an application developed using one type of terminal device can
work with other types of terminals with no change to the software.

Development Process

In this section we outline the process of developing a QMBasic program.

1. Entering the Source Program

The source form of a QMBasic program must be stored as a record in a directory type
file. These files are represented by operating system directories and the records in
them are represented by operating system files. Because we use this type of file, the
program source may be created and maintained using any convenient text editor.

2.12-4

Introduction to QMBasic Programming 145

QM provides a full screen editor, SED, which is used by many programmers and has
several features specifically for program development. The ED line editor can also be
used for program development. The AccuTerm terminal emulator bundled with QM
includes a GUI editor, WED. Programmers can also use any underlying operating
system editor such as vi on Linux or Notepad on Windows.

Whichever editor we choose to use, the application is built as one or more separate
program modules. A very simple program may consist of only a single module. A
typical database application will have several hundred or, perhaps, thousands of
modules. Unlike most other programming languages, these modules are not brought
together to form a single file holding the executable version of the application.
Instead, this linking process takes place when the program is executed. This gives us
a very flexible system, reduces memory requirements by only loading the parts of the
application that are in use, and allows some degree of maintenance activity to an
application whilst it is in use.

By convention, the source version of an application is often stored in a file named BP
(Basic Programs) and this is the name used in all examples in this course. Any other
name may be used but some commands assume BP by default.

2. Compiling the Program

Each module of the application must be compiled to convert it to its executable
format. This is done using the BASIC command.

BASIC file.name record.name {options}

where
file.name is the name of the QM file holding the program.
record.name is the name of the program source record to be compiled.
options are compilation options described in the @M Reference Manual.

The compiled form of the program is placed in a record of the same name as the
source but in a separate file named by adding a .OUT suffix to the source file name.

3. Running the Program

A compiled QMBasic program is run by typing
RUN file.name record.name
where

file.name 1s the name of the source file. The .OUT suffix is added
automatically to access the compiled version of the program. If the
file name is omitted, the BP file is used by default.

record.name 1is the name of the program to be run.

Alternatively, a V-type (verb) VOC entry may be created to access the program as a
QM command without the need to use the RUN command. This VOC item may be
created using an editor or by use of the CATALOG verb discussed later.

2.12-4

146 Teach Yourself OpenQM

Overview of Program Structure

All QMBasic programs have the same structure:

PROGRAM name

program statements
END

The only lines allowed before the PROGRAM line or after the END are comments
and blank lines. Typically, a program might have some descriptive text before the
PROGRAM line.

The name given in the PROGRAM line must follow the rules of QMBasic variable
names but is otherwise ignored. For ease of maintenance, it makes sense for this
name to be the same as the name of the source program record.

The PROGRAM line is optional. It may be omitted or, for situations that we will
meet later, may be replaced by a SUBROUTINE, FUNCTION or CLASS line.

Each QMBasic program statement normally appears on a separate line. Some
statements have a multi-line syntax and any statement that has a comma in its
syntax may start a new line immediately after the comma. A statement can also be
split across lines at some arbitrary point by ending the line with a tilde (~) character.

Multiple statements can be written on a single line by separating them with
semicolons.

Comments

A well written program will include many comments explaining to the reader how
the program works.

A comment line may be written in one of three forms:

* comment text
I comment text
REM comment text

In each case, the comment text is totally ignored.

A comment may appear on the same line as a statement by use of the semicolon
separator. For example,
TOTAL = QTY * PRICE ;* Calculate total value

This is a good example of a totally pointless comment. It does not tell the reader
anything that he could not see for himself.

2.12-4

Introduction to QMBasic Programming 147

Modularity

To ease maintenance, applications may be broken into separate program modules,
each performing some part of the overall functionality. At run time, a program may
use the CALL statement to call another program as an external subroutine.

Individual program modules can also contain internal subroutines to break the
task of the program into smaller steps. These are entered using the GOSUB
statement.

Both types of subroutines are discussed in detail in a later module of this course.

Very often, the same sequence of QMBasic statements is required in several
modules. These might perhaps be statements that define the structure of a database
file. Rather than repeat these statements in each module, which would increase the
cost of maintenance if they had to be changed, we can use the concept of an include
record. This is a program fragment that can be imported into the source of
programs that need it during the compilation process by use of a line of the form

$INCLUDE {Ffile.name} record.name

where

file.name is the name of the file holding the record to be imported. If omitted,
this defaults to the file holding the program being compiled and, if
the item 1s not found, a second search is performed in the SYSCOM
file that holds standard include records.

record.name 1is the name of the record to be imported.

The program is compiled just as though the source lines contained in the include
record had appeared in place of the $INCLUDE line. The include record itself is not
compiled. For this reason, include records frequently have a recognisable suffix of .H
added. The compiler is aware of this convention and a command sequence such as

SELECT BP
BASIC BP

would compile all records in the BP file except those ending .H (or .SCR which is used
for screen definitions as discussed elsewhere).

One of the most frequent uses of include records is with equated tokens. These give
names to constants such as field positions or limiting values.

EQUATE name TO value
Careful use of equated tokens can significantly reduce maintenance costs by

requiring only a single line to be amended if the value is to be changed. It is also very
easy to find references to a token name using the SEARCH verb.

2.12-4

148 Teach Yourself OpenQM

15.1 QMBasic Language Elements

In this section, we will look at the building blocks from which a QMBasic program is
constructed. We will return to examine each component in more detail in later
modules.

Variables and Constants

A QMBasic program may contain many variables holding the data used by the
program. Variable names must commence with a letter and may contain further
letters, digits, periods (full stops), percentage signs and dollar signs. There is no
practical limit to the length of a variable name in QMBasic. Names should be chosen
to be meaningful. In general, names are case insensitive though case sensitivity can
be selected via a compiler option.

Although there are few restrictions on the choice of names, it is advisable to avoid
using names which correspond to QMBasic statements, functions and keywords.

Variables used in QMBasic programs do not have to be declared at the start of the
program. The compiler determines what variables are required as it processes the
program.

QMBasic variables are of variant type, that is, the type of data that they hold may
change during execution of the program. There are many different data types, the
type of a variable being determined by the value stored in it. The types include:

Unassigned All local variables used by a program start as this type. Any
attempt to use the value of the variable in an expression will
give an error message.

Integer Stores a whole number value.

Floating point ~ Stores a fractional value or a value that is too large to be
represented as an integer.

String Stores a character string (a series of characters). There is no
practical limitation on the length of the string. The special case
of a zero length string is known as a null string.

File Holds control information for reference to a QM file. File
variables are used in all file handling statements.

Type Conversion

If a variable is set to contain a string of digits and is subsequently used in an
arithmetic calculation, the value is converted internally to a numeric form without
affecting the variable itself. This allows programmers largely to ignore the way in
which data is stored internally.

If this arithmetic calculation is performed many times in a loop, it may be worth
forcing a type conversion to prevent repeated temporary conversions. For this reason,
programs often contain apparently redundant looking statements of the form

2.12-4

Introduction to QMBasic Programming 149

B=A+0

to force a value to be converted to a number. Do not overuse this construct. It only
provides a useful performance benefit if the value will be used many thousands of
times.

Constants
Constant values may be numbers or strings.

Numeric constants are written as a sequence of digits, optionally preceded by a sign
or containing a decimal point. They should not be enclosed in quotes.

String constants are sequences of characters enclosed by delimiters. Valid delimiter
characters are the single quote ('), the double quote (") and the backslash (\). The
delimiter at the start and end of the string value must be the same but there is no
difference in the three styles of string. Three styles of quote are provided because we
may need to enclose one quoted string inside another, sometimes even enclosing this
inside some third string.

The mark characters are available as @IM, @FM, @VM, @SM and @TM.

Scalars, Matrices and Dynamic Arrays

QMBasic provides support for both scalar and matrix variables. A scalar variable is
a simple value referred to by its name alone. It may contain data of any type. A
matrix is a one or two dimensional array of data items. Each element may be of a
different type. Matrices are discussed in detail in a later module.

A variable holding a string value may be considered as a dynamic array, the mark
characters being used to divide it into fields, values and subvalues. Such a string
may correspond to a record in a data file or may be totally internal to the program.
Special operations are provided to operate on dynamic arrays. These include sorted
and unsorted searching, insertion, deletion, replacement and extraction.

A dynamic array in which each field, value or subvalue contains a numeric value is
known as a numeric array. Many of the arithmetic operations operate on numeric
arrays by processing corresponding elements in turn.

Scope of Variables

By default, variables are local to the program module in which they appear but are
shared by all internal subroutines. QM extends the Basic language found in other
multivalue products to add the concept of a local subroutine having its own variables
that have scope only within the subroutine. This concept is discussed later.

QMBasic also provides common blocks for data which is to be shared between two
or more programs. These are discussed in a later module.

2.12-4

150

Teach Yourself OpenQM

Expressions and Operators

An expression consists of one or more data items (constants or variables) linked by
operators.

constant Use constant value (string or numeric)

var Use value of named variable

var([s,n] Use n character substring starting at character s of the named
variable

var[n] Use last n characters of a string

var<f> Use field f of a dynamic array variable

var<f, v> Use field f, value v of a dynamic array variable

var<f, v, s> Use field f, value v, subvalue s of a dynamic array variable
func(args) Use the value of a function which may take arguments

In all cases above, var may be a matrix reference, for example
var(r, c)[s, n]

where r and c are expressions which evaluate to the desired matrix index values.

The substring extraction operation x[s, n] extracts n characters starting a character s
of the string x. Character positions are numbered from one. Thus

A "abcdefghijkl*
Z = A[5,3]

sets Z to the string "efg".

If the bounds of the substring extend beyond the end of the string from which it is to
be extracted, the result is truncated. Trailing spaces are not added to make up the
shortfall. A start position of less than one is treated as one.

The trailing substring extraction operation x[n] extracts the last n characters of the
string x. Thus

A = "abcdefghi jklI*
Z = A[3]

sets Z to the string "jk1".

If the length of the substring to be extracted is greater than the length of the source
string, the entire source string is returned.

The field extraction operator x<f, v, s> extracts field f, value v, subvalue s from the
source string x. If s is omitted or zero, field f, value v is extracted. If v is omitted or
zero, field fis extracted. Thus

x<2> extracts field 2

x<2, 7> extracts field 2, value 7
x<2, 7, 3> extracts field 2, value 7, subvalue 3

2.12-4

Introduction to QMBasic Programming 151

There is also a special conditional item of the form
IF conditional .expr THEN expr.1l ELSE expr.2

where conditional.expression is evaluated to determine whether the overall value is
that of expr.1 or expr.2. Because this expression must return a value, the THEN and
ELSE elements must both be present.

The boolean (true/false) values are such that values other than zero or a null string
is treated as true. An expression returning a boolean value returns the integer value
1 for true, O for false. The boolean values are available as @TRUE and @FALSE for
use in programs. A statement such as

OVERDUE = 1

may not be clear to someone reading the program that the variable is intended to
hold a boolean value rather than just a number whereas

OVERDUE = @TRUE

makes the intention immediately clear.

The QMBasic operators are set out in the table below. The numbers in the right
hand column are the operator precedence, the lower valued operators taking
precedence in execution. Operations of equal precedence are processed left to right
with the exception of the exponentiation operator which is processed right to left.
Round brackets may be used to alter the order of execution or to improve readability
of complex expressions.

<> Dynamic array extraction 1
[] Substring extraction 1
** or A Exponentiation (raising to power) 2
* Multiplication 3
/ Division 3
1 Integer division 3
+ Addition 4

Subtraction 4

Implicit format (See FMT() function) 5

Concatenation 6
< Less than 7
> Greater than 7
= Equal to 7

Not equal to 7
<= Less than or equal to 7
>= Greater than or equal to 7
MATCHES Pattern match (see below) 7
AND Logical and 8
OR Logical or 8

2.12-4

152

Teach Yourself OpenQM

The following alternative logical and relational operator formats may be used
< LT

> GT

= EQ

NE <> ><
<= LE =< #H>
>= GE => #H<
MATCHES MATCH

AND &

OR !

Note: The language syntax includes an ambiguity with the use of the < and >
characters as both relational operators and in dynamic array references. For
example, the expression

A + O

could be extracting field B of dynamic array A and forcing it to be stored as number
by adding zero, or it could be testing whether A is less than B and the result is
greater than 1. In cases such as this, the compiler looks at the overall structure of
the statement and takes the most appropriate view. Use of brackets when mixing
relational operators with field references will always avoid possible
misinterpretation.

The relational operators (=, #, <, >, <= and >=) perform a numeric comparison if both
items to which the operator is applied are numbers or can be converted to numbers.
If either item cannot be treated as a number, a string comparison is performed,
comparing characters from the left of the strings until their correct sequence can be
determined.

The MATCHES operator matches a string against a pattern consisting of one or
more concatenated items from the following list.

Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type
0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters
ON Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double
quotation marks may be used. Backslashes may not be used as string
quotes in this context.

2.12-4

Introduction to QMBasic Programming 153

The values n and m are integers with any number of digits. m must be greater than
or equal to n.

The 0A, nA, ON, nN and "string" patterns may be preceded by a tilde (~) to invert the
match condition. For example, ~4N matches four non-numeric characters such as
ABCD (not a string which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, ON, their inverses (~0A, etc) and "".

The pattern string may contain alternative templates separated by value marks. The

MATCHES operator tries each template in turn until one is a successful match
against the string.

Assignment Statements

Variables may be assigned values by statements of the following forms

var = expr Assign expr to var

var(s, n] = expr Assign expr to substring of var

var<f> = expr Assign expr to field f of var

var<f, v> = expr Assign expr to field f, value v of var

var<f, v, s> = expr Assign expr to field f, value v, subvalue s of var

In all cases, var may be a dimensioned matrix element.

Except for the substring assignment, the operator shown as = in the above examples
may be any of the following operators:

= Simple assignment
+= Add expr to original value
-= Subtract expr from original value

= Concatenate expr as a string to original value

Substring assignment can only use the simple = operator and overlays an existing
portion of a string. If the substring bounds extend beyond the end of the actual value
stored in the string, the excess data is lost. If the value of expr is longer than the
substring to be set, the trailing characters are lost. If the value of expr is shorter
than the substring to be set, the remainder is filled with spaces.

Z ="ABCDEFGHIJ"

Z[3,4] ="1234" results in "AB1234GHIJ"
Z[3,2] ="1234" results in "AB12EFGHIJ"
Z[3,4] ="12" results in "AB12 GHIJ"

Field (or value, or subvalue) assignment replaces an existing field (or value, or

2.12-4

154

Teach Yourself OpenQM

subvalue) with the result of the expression. If the specified field, value or subvalue
does not already exist within the string, mark characters are added as necessary.

A new field, value or subvalue may be appended to a dynamic array without knowing
the existing number of items by an assignment of the form

7<-1> = expr
7<5,-1> = expr
7<5,3,-1> = expr

@-Variables and Constants

The QMBasic language provides a number of special variables and constants with
names prefixed by the @ character. Some @-variables can be updated by programs
though most are read-only.

The @-variables are also available for use in I-type definitions or within paragraphs.

Compile-time Constants

These constants are available in programs and I-type definitions to improve
readability.

@AM Attribute mark (synonym for @FM)
@FM Field mark

@IM Item mark

@SM Subvalue mark

@SVM Subvalue mark (synonym for @SM)
@TM Text mark

@VM Value mark

@FALSE 0
@TRUE 1
Variables

There are many of these. The most useful are shown below. Except where indicated,
these items are read-only.

@COMMAND The last command entered at the command
prompt or initiated using the BASIC EXECUTE
statement.

@CRTHIGH Contains the number of lines per page of the
display.

@CRTWIDE Contains the width of the display.

@DATE The internal format date value (days since 31

December 1967) at which the current command

2.12-4

Introduction to QMBasic Programming 155

@DAY

@ID

@LOGNAME
@LPTRHIGH

@LPTRWIDE

@MONTH

@PATH

@RECORD

@SENTENCE

@SYSTEM.RETURN.CODE
@TERM.TYPE
@TIME

@TTY
@USERNO
@USER.RETURN.CODE

@WHO
@YEAR

@YEAR4

Statements

started execution.

The day of the month at which the current
command started execution as a two digit value.

The record id of the record being processed by a
query processor command or an I-type function.
This variable may be updated by a BASIC
program.

User's login name.

Contains the number of lines per page of print
unit zero. Depending on the current setting of the
PRINTER flag, this may refer to the display or to
the printer.

Contains the width of print unit zero. Depending
on the current setting of the PRINTER flag, this
may refer to the display or to the printer.

The month in which the current command started
execution as a two digit value.

The pathname of the current account.

The data of the record being processed by an
I-type function. This variable may be updated by
a QMBasic program.

The currently active sentence. This is different
from @COMMAND if the command runs a
paragraph, sentence or menu.

A status value returned from most commands.
Terminal type.

The internal format time value (seconds since
midnight) at which the current command started
execution.

Terminal device name.
User number.

This variable is initially set to zero and may be
updated by QMBasic programs to provide status
information, etc. QM places no rules on the use of
this variable and does not update it at any time.

User's account name.

The last two digits of the year in which the
current command started execution.

The year in which the current command started
execution.

The QMBasic language has many statements to perform such actions as terminal
input/output, file handling, searching in dynamic arrays, etc.

2.12-4

156 Teach Yourself OpenQM

A statement consists of a statement name followed by any appropriate qualifying
information for that statement. There is a space between the statement name and
the qualifying information.

Functions

A function returns a value which can be used in an expression. Most functions
require one or more data items used to calculate their returned value. These appear
in round brackets after the function name. Functions that do not require any input
data must have a pair of empty brackets after the function name.

QMBasic has a very large collection of functions, covering mathematical operations,
character string processing, etc. Users can also define their own functions as we shall
see in a later module.

2.12-4

Introduction to QMBasic Programming 157

15.2

Terminal Handling

The QMBasic language provides a terminal input / output system which is
independent of terminal device type. A program written using one terminal type can
be run on any mixture of different terminal types. To support this system, QM has
an underlying terminal definition library from which it can find the control
sequences appropriate to any particular terminal type.

The DISPLAY Statement

The simplest way to output data to the user's terminal is via the DISPLAY
statement. The CRT statement is identical to DISPLAY.

The DISPLAY statement names the item to be displayed. This may be a constant,
variable or expression. After the item is output, the cursor is moved down to the start
of the next line. If no display item is given, a blank line is output.

For example,

DISPLAY "Outstanding Payment Details”
DISPLAY

DISPLAY "Open invoices " : NUM.OPEN
DISPLAY "Overdue invoices " : NUM.OVERDUE

The above statements would produce a display such as
Outstanding Payment Details

Open i1nvoices 27
Overdue invoices 3

Here we have used a simple expression in the last two DISPLAY statements,
concatenating a fixed text string to the variable holding the value to be shown.

The output could be improved by use of a display list. This consists of a series of
items to be displayed, separated by commas. The comma advances the output to the
next tab column across the screen. Tab columns are set at ten character intervals by
default though this can be changed.

Our example becomes,

DISPLAY "Outstanding Payment Details”
DISPLAY

DISPLAY "Open invoices ", NUM_OPEN
DISPLAY "Overdue i1nvoices ", NUM.OVERDUE

The above statements would produce a display such as
Outstanding Payment Details

Open invoices 27
Overdue invoices 3

A DISPLAY statement that ends with a trailing colon suppresses the normal
movement down to the start of the next line, leaving the cursor positioned after the

2.12-4

158

Teach Yourself OpenQM

final data character output. One of the lines from the previous example could become

DISPLAY "Open invoices ":
DISPLAY NUM.OPEN

This feature is particularly useful when building complex display lines or when
displaying a prompt for user input.

When the DISPLAY statement is used to output successive lines of data as in the
preceding examples, QM maintains a count of the number of lines output. When a
complete screen of data has been output a "Press any key to continue" prompt is
displayed automatically. Programmers do not need to include any statements to
perform their own line counting and continuation prompt handling.

Taking Control of Screen Layout

Instead of simply displaying successive lines down the screen, we may want to
output a formatted screen. Here we need to take control of the cursor position.

Terminal devices allow the cursor to be moved to a specific point on the screen using
cursor control sequences. Rather than writing these explicitly into our program
(which would make it hard to move between terminal types), we use the @() function
to look up the control sequence in the terminal definition library.

Our previous example now becomes,

DISPLAY @(0,0)
DISPLAY @(0,2)
DISPLAY @(0,3)

"Outstanding Payment Details”
"Open iInvoices™ : @(17,2) : NUM.OPEN
"Overdue invoices®™ : @(17,3) : NUM.OVERDUE

The @() function takes two arguments, the column and row position, both numbered
from zero. The returned value of this function is the control string to move the cursor
to the specified position. Although usually used in a DISPLAY statement, the result
of the @() function is simply a character string which may be used in any way we
wish.

The @() function can be used with just a column number. This positions the cursor to
the given column on the current line. Use of this feature is not recommended as not
all terminals have this capability.

First use of the @() function to perform cursor positioning within a program turns off
QM's line counting. It becomes the programmer's responsibility to manage the screen
layout and pagination. No "Press any key to continue" prompts will appear.

2.12-4

Introduction to QMBasic Programming 159

Terminal Control Functions

The @() function also provides access a large number of terminal control functions.
These are identified by the first argument to the @() function being a negative value.
Some of these functions require a second argument to qualify the action to be
performed.

The most commonly used terminal control functions are:

@(-1) Clear screen, leaving the cursor at the top left

@(-2) Move the cursor to the top left

@(-3) Clear the screen from the cursor to the end of the screen
@(-4) Clear the current line from the cursor position onwards

@(-5) Start flashing mode

@(-6) End flashing mode

@(-11) Start half intensity mode

@(-12) End half intensity mode

@(-13) Start reverse video mode (exchange foreground / background colours)
@(-14) End reverse video mode

@(-15) Start underlining

@(-16) End underlining

Note how some of these functions operate in pairs to turn on or off a feature.
Not all terminals support all features available via the @() function. Where a

terminal does not support a feature, the relevant @() functions return a null string
and thus have no effect.

Example

DISPLAY @(-1) :
DISPLAY @(30,0) : @(-15) : "Outstanding Invoices®™ : @(-16) :

These statements clear the screen and display the given text centered on the top line.
The text will be underlined if the terminal supports this feature.

Note the use of the trailing colon to suppress unnecessary cursor movements.

2.12-4

160

Teach Yourself OpenQM

The INPUT Statement
The INPUT statement performs input from the user's terminal.

The main elements of the syntax of this statement are:
INPUT var {, length { _ } } { - }

where
var is the variable to receive the input data.
length is the maximum number of characters allowed.

In its simplest form, specifying only the variable name
INPUT VAR

all data characters entered by the user are echoed back to the display and stored in
the named variable until the user presses the return key. The return key itself is not
stored but is echoed to the terminal causing the cursor to move to the start of the
next line. The program continues with the next statement.

Adding the length component specifies a maximum number of characters to be
entered.

INPUT VAR, 10

Fewer characters may be entered by terminating input with the return key. If length
characters are entered, input is terminated as though the user had pressed the
return key. This is likely to be difficult to use because the user needs to know that
the return key must not be pressed if the maximum number of characters are
entered. The most common use of this form is where the length is specified as one to
catch a single keystroke.

The optional underscore after the length specifies that although input is to be limited
to the given number of characters, the user must press the return key to terminate
the input.

INPUT VAR, 10_

This time, any excess data entered at the keyboard is not echoed and not stored.

The optional trailing colon suppresses the cursor movement to the start of the next
line. This is normally only needed when entering input on the bottom line of the
screen where echoing of the return key would otherwise scroll the screen up by one
line.

QM supports extended options in the INPUT statement:
INPUT VAR, 10_ HIDDEN

to echo asterisks in place of each character entered. This is useful for password entry.
INPUT VAR, 10_ UPCASE

converts input data to uppercase automatically.

There is also a timeout option that is described in the @M Reference Manual.

2.12-4

Introduction to QMBasic Programming 161

The INPUT @ Statement
The INPUT @ statement performs input from the user's terminal at a given position.

The syntax is
INPUT @(Ccol, row) - var, length { _} { : }

where
col is the column position for the input field.
row is the row position for the input field.
var is the variable to receive the input data.
length is the maximum number of characters allowed.

The INPUT @ statement is a combination of a display and an input. If the colon after
the screen position is present, the current content of the named variable is displayed
at the given position in a field of length characters. The cursor is then positioned to
the start of the displayed data for entry of new data to be stored in the variable.

As soon as the first character is entered, the original data is cleared from the screen
and the new data is displayed in its place. When the return key is pressed, input
terminates and the program continues at the next statement.

If the user simply presses the return key without entering any other data characters,
the original value of the variable is retained.

This statement allows programmers to offer the user a default value which may be
changed by entering new text or retained by pressing the return key.

The INPUT @ statement supports the HIDDEN and UPCASE options described for
INPUT plus

APPEND Position the cursor at the end of the data. Use of this keyword also
implies EDIT mode.

EDIT Starts in "edit" mode, suppressing the normal clearance of the
input field if the first character entered by the user is a data
character rather than an edit character.

OVERLAY Starts in "overlay" mode where data entered by the user replaces
the character under the cursor rather than being inserted.

PANNING Allows entry of an unlimited number of characters in a field width
of the given length by panning the data if it is longer than the
display width. Use of this option requires length to be specified and
implies the presence of the underscore.

The PROMPT Statement
Whenever a program requests terminal input using INPUT or INPUT @, a prompt

character is displayed to the left of the input field. By default, this prompt is a
question mark but it can be changed using the PROMPT statement.

2.12-4

162

Teach Yourself OpenQM

PROMPT char

or
PROMPT **

The first form sets the prompt character to char. The second form suppresses display
of a prompt character.

The INPUTERR Statement
The INPUTERR statement displays a message on the bottom line of the screen. This

message will be removed automatically when the return key is pressed to terminate
a subsequent INPUT @ operation.

INPUTERR text

The text must not include any cursor movement functions.

The INPUTERR statement is intended for displaying error messages in input
validation but can be used in any way the programmer finds useful.

2.12-4

Introduction to QMBasic Programming 163

Exercise

If it does not already exist, create a BP file in your account by typing
CREATE.FILE BP DIRECTORY

Create the QM demonstration database by typing
SETUP .DEMO

Use a suitable editor such as SED or ED to create a program named ORDERS in
your BP file. This program is the starting point for the exercises that follow.

This first version should simply display a screen similar to the one shown below and
allow the user to enter data for the order number and action fields. Leave two blank
lines under the customer number as we will insert additional data here later. There
should be five lines available for product details above the order total line. Position

the Action prompt text at least one line above the bottom of the screen to allow for
use of INPUTERR.

ORDER PROCESSING
Order No: Date:

Customer No:

Part Description Price Qty
Total

Order Total:

Action(F/D/X):

Construct your program so that it does all the DISPLAY operations to paint the fixed
text and then does two INPUT operations, one for the order number and one for the
action prompt.

Use meaningful names for your variables. As you develop this program further, you
will be using variables to hold items that have been read from files. It is often useful
where a data item corresponds to a field in a file to use the same name as in the
dictionary. This helps to make your program easier to understand.

For this initial stage of your program, think of a suitable name for the order number
(we have used ORDER.NO in the worked examples). Order numbers are five digits so
allow five characters to be entered.

2.12-4

164 Teach Yourself OpenQM

The action prompt does not correspond to a data item stored in a file. Think of a
suitable name for this item in your program. This prompt will be developed further
in later exercises. Allow up to three characters to be entered as we will add new
features here later.

Compile your program using
BASIC BP ORDERS

and, assuming that you have no errors, run your program using
RUN ORDERS

to check that it works.

2.12-4

Introduction to QMBasic Programming

Suggested solution

165

Your program may be different and will probably continue to diverge from our
examples as you work through the exercises.

PROGRAM ORDERS

PROMPT =™

* Display fixed

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

* Perform input

INPUT @(10,3)
INPUT @(16,20)

END

parts of screen

e(-1)

@(32,0) : "ORDER PROCESSING*
@(0,3) : "Order No:-
@(20,3) : T"Date:*

@(0,5) "Customer No:*
@(5,8) : "Part-

@(11,8) : "Description”
@(48,8) : "Price”

@(56,8) : "Qty"

@(65,8) : "Total*

@(48,14) : "Order Total:*
@(0,20) : “Action (F/D/X):*
: ORDER.NO, 5_

: ACTION,3

2.12-4

166

Teach Yourself OpenQM

15.3

Conditional Execution and Looping

So far, our program has started at the top and worked its way statement by
statement to the bottom. In this module we will learn how to alter the flow through a
program by adding conditional statements that determine whether part of our
program is to be executed and loops to repeat part of the program several times.

Boolean Values

All conditional actions require a true / false value (a boolean value) to determine
how they will behave. In QMBasic the value for true is 1 and the value for false is
zero. Any action that produces a boolean result will give one of these two values.

When testing a boolean value, QMBasic treats zero and a null string as false and all
other values as true. This rather wider definition can be of great use in simplifying
our programs.

The relational operators (=, #, <, >, <= and >=) all return boolean values showing the
outcome of the test performed. Remember that these operators work by performing a
numeric comparison if both data items can be treated as numbers and a character by
character string comparison if either cannot be treated as a number.

A =99

B =100

The relational test A > B would return false (0)
A ="99A'

B =100

The relational test A > B would return true (1)

The MATCHES operator tests whether a character string has a structure that
matches a template, returning a boolean result. The template consists of any
combination of the components below:

Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type
0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters
ON Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly.

The values n and m are integers with any number of digits. m must be greater than
or equal to n.

2.12-4

Introduction to QMBasic Programming 167

The 0A, nA, ON, nN and "string" patterns may be preceded by a tilde (~) to invert the
match condition. For example, ~4N matches four non-numeric characters such as
ABCD (not a string which is not four numeric characters such as 12C4).

A null string matches patterns ..., 0A, 0X, ON, their inverses (~0A, etc) and "".

Example

REG = "N785HJG"

The expression
REG MATCHES "1A1-3N3A*

would return true (1).

The pattern string may contain alternative templates separated by value marks.

PATTERN = ""V"1-3N3A"™ : @VM : ""W"1-3N3A"
V.OR.W = REG MATCHES PATTERN

The MATCHES operator tries each template in turn until one is a successful match
against the string.

There are many functions that return a boolean result. Two very useful ones are
ALPHAC(str) Test if stris entirely alphabetic.

NUM(str) Test if str can be treated as a number. Note that a null string
returns true as it is generally treated as zero.

The NOT() function takes a boolean value as its argument and returns the inverse.
Thus the expression

NOT(PART.NO MATCHES "3N%)

tests whether PART.NO is not three digits. Think carefully about how this differs
from

PART.NO MATCHES "~3N*"

Boolean values can be combined using the AND and OR operators. For example
OK = PART.NO MATCHES "3N" AND PART.NO > 100

or
DONE = PART.NO = *"" OR PART.NO = "Q-

2.12-4

168 Teach Yourself OpenQM

The IF Statement
The IF statement allows conditional execution. The general form of this statement is

IF condition THEN statement.l ELSE statement.2

where
condition evaluates to a boolean value.
statement. 1 is the statement to be executed if the condition is true.
statement.2 is the statement to be executed if the condition is false.

The ELSE clause is optional and can be omitted if no action is to be performed if the
condition is not true.

Either or both of the THEN or ELSE clauses can start on a new line.

Examples

IF NOT(PART.NO MATCHES "3N") THEN INPUTERR "Bad part no*”

IF DUE.DATE < DATE() THEN DISPLAY "Overdue*”
ELSE DISPLAY "On loan*®

IF ITEM.ID[1,1] = "0 THEN DISPLAY "Sundries”
ELSE IF ITEM.ID[1,1] = 1" THEN DISPLAY “Furniture®
ELSE DISPLAY "Other*

Note how the ELSE clause of the first IF in the final example contains a second IF
statement.

Often we want many statements to be controlled by the same condition. There is an
alternative form of the IF statement that allows this.

IF condition THEN
statements

END ELSE
statements

END

Here the entire first block of statements will be executed if the condition is true, the
second block of statements if the condition is false. Again, the THEN and ELSE
keywords can start a new line.

The conditioned block of statements may contain any BASIC constructs including
further IF statements.

2.12-4

Introduction to QMBasic Programming 169

The CASE Statement

The CASE statement provides a means to execute one of a series of blocks of
conditioned statements.

BEGIN CASE
CASE condition.1
statements
CASE condition.2
statements
CASE condition.3
statements
END CASE

The CASE statement tests each condition in turn until one is found that is true. The
statements for that condition are executed and then the program continues at the
statement following the END CASE.

If more than one of the conditions is true, only the statements controlled by the first
true condition will be executed.

If none of the conditions is true, none of the conditioned statements is executed.

We frequently want some statements to be executed if none of the conditions is true.
QMBasic does not provide a special method to do this. Instead, we simply add a final
CASE which will always be true. By convention, this is written as CASE 1 because 1
1s our value for true.

Using a CASE statement, one of the earlier examples becomes

BEGIN CASE
CASE ITEM.ID[1,1] = "O°
DISPLAY "Sundries”
CASE ITEM.ID[1,1] = "1°
DISPLAY "Furniture-”
CASE 1
DISPLAY "Other*"
END CASE

By use of the semicolon separator to place multiple statements on a single line, this
can be made more readable:

CLASS = ITEM.ID[1,1]

BEGIN CASE
CASE CLASS = "0" ; DISPLAY "Sundries”
CASE CLASS = "1" ; DISPLAY “Furniture®
CASE CLASS = "2* ; DISPLAY “Paper-
CASE CLASS = "3" ; DISPLAY "Binders”
CASE CLASS = "4" ; DISPLAY "Equipment”
CASE 1 ; DISPLAY "Other*

END CASE

In the above example, we have added further item classifications. Using the first
form where each CASE element extracts the first character of the ITEM.ID and tests

2.12-4

170

Teach Yourself OpenQM

it against a constant becomes inefficient with many possible values. Instead, we have
extracted the product class just once and stored it in a temporary variable which is

then used in the CASE elements. As a general rule, if a value extracted using a
substring or dynamic array reference will be used more than once, it is better to
create a temporary variable as in this example.

2.12-4

Introduction to QMBasic Programming 171

The LOOP / REPEAT Construct

The simplest way to repeat a group of BASIC statements is to enclose them in a
LOOP / REPEAT construct.

LOOP
statements
REPEAT

The statements inside the loop will be repeated until something causes the program
to terminate or we exit from the loop.

The most common way to exit from the loop is to use either WHILE or UNTIL.

LOOP
statements
WHILE condition
statements
REPEAT

The WHILE statement causes the program to exit from the loop if the condition is
false. When this occurs, execution continues at the statement following the REPEAT.

LOOP
statements
UNTIL condition
statements
REPEAT

The UNTIL statement causes the program to exit from the loop if the condition is
true. Note how with both WHILE and UNTIL the condition test may appear at any
point within the loop structure and is performed at that point.

A simple input data validation loop might appear as

LOOP

INPUT @(10,4) : ITEM.ID, 3_:
UNTIL ITEM.ID MATCHES "3N*

INPUTERR "ltem code must be three digits®
REPEAT

A single loop may contain multiple WHILE or UNTIL statements.
Where a program has loops inside other loops, the WHILE or UNTIL controls exit

from the innermost loop. Sometimes it is necessary to include the same test in the
outer loop(s) to "walk out" of the loops one by one when some condition occurs.

2.12-4

172 Teach Yourself OpenQM

Counted Loops - The FOR / NEXT Construct

The FOR / NEXT construct allows us to repeat a groups of statements some given
number of times by use of a control variable.

FOR var = start.expr TO end.expr { STEP iIncr.expr }

statements
NEXT var
where
var is the control variable to be used.
start.expr evaluates to the first value for var.
end.expr evaluates to the final value for var.
incr.expr evaluates to the value by which var is to be incremented for each

cycle of the loop. If omitted, a value of 1 i1s used.

The statements within the loop are executed for successive values of var from
start.expr to end.expr. The loop terminates when the next cycle would be for a value
greater than end.expr.

If incr.expr is a negative value, the loop counts backwards and terminates when the
next cycle would be for a value less than end.expr.

The control variable may be used within the loop but should not be overwritten.

The program should not rely on the value of the control variable on leaving the loop.

Examples

FOR 1 = 1 TO 10
CRT 1
NEXT 1

The above loop simply displays the numbers 1 to 10.

FOR I =1 TO 5

INPUT @(16, 5+1) PROD.NO, 3 :
UNTIL PROD.NO = **

processing statements
NEXT |

This loop shows the use of UNTIL in a counted loop to exit before the count has
reached its limiting value. Note also how the control variable is used to calculate the
screen position for the input.

2.12-4

Introduction to QMBasic Programming 173

The EXIT Statement

The EXIT statement provides another way to exit from a LOOP / REPEAT or from a
FOR / NEXT construct.

The above example could be written as

FOR I =1 TO 5
INPUT @(16, 5+1) PROD.NO, 3 :
IF PROD.NO = *" THEN EXIT
processing statements

NEXT |

Although, in this case, the UNTIL is probably neater, there are situations that we
will meet in later modules when the syntax of the conditional test is such that we
would have to use EXIT.

The STOP Statement

The STOP statement terminates the current command, returning to the menu,
paragraph, program or command prompt from which it was started.

STOP { message }
The optional message is displayed on the user's terminal.

The STOP statement is intended for termination of programs on successful
completion or in the event of minor errors.

The ABORT Statement

The ABORT statement terminates all current activity (programs, menus,
paragraphs, etc) and returns to the command prompt. Before this prompt is
displayed, QM checks for an executable VOC item named ON.ABORT and, if this is

present, executes it.

ABORT { message }

The optional message is displayed on the user's terminal.

The ABORT statement is intended for termination of programs when a major error is
detected, for example, when a critical file cannot be opened.

2.12-4

174

Teach Yourself OpenQM

Internal Subroutines

A BASIC program becomes more difficult to understand and maintain as it gets
larger. We can use subroutines to break the task of the application into manageable
sized pieces.

QM applications make use of two types of subroutine. An internal subroutine is
appears in the same program module (source record) as the calls to it. An external
subroutine is a totally separate program module. Typical applications use external
subroutines to represent the major functional areas of the application and internal
subroutines to break the task of the modules into small steps. We will discuss
external subroutines in detail later.

An internal subroutine is simply a series of statements within the program. The first
statement within the subroutine has a label to allow us to refer to it in a GOSUB
statement elsewhere in the module. The subroutine will terminate when it executes
a RETURN statement to return to the statement following the GOSUB.

We use internal subroutines either because the same sequence of statements needs
to be executed at several places in the flow through the logic of the program or to
make the program easier to read and maintain by breaking the task into small steps.
Calling an internal subroutine is very fast.

Unlike most other programming languages, internal subroutines do not have their
own local variables. The variables used in a program module are common to all
statements within that module. We will discuss some extensions provided in QM
later that do allow local variables.

Labels

The first statement of an internal subroutine must be labelled so that we can refer to
it elsewhere. A label consists of a letter followed by further letters, digits, full stops,
dollar signs or percent signs. The label must be terminated by a colon.

Label names should be chosen to reflect the role of the subroutine. For example, in
our ORDERS program, we could put all of the processing for the action prompt into a
subroutine. This could be named PROCESS.ACTION or some other meaningful

name.

Alternatively, for historic reasons, QMBasic allows numeric labels. These start with
a digit and may contain only digits and full stops. The trailing colon is optional but
makes it easy to locate the subroutine with the editor. Numeric subroutines names
are not recommended as they impart no information about the purpose of the
subroutine.

The program statements to paint the fixed parts of the screen in our orders program
could be made into a subroutine as shown below.

2.12-4

Introduction to QMBasic Programming 175

* Paint fixed part of screen

PAINT .SCREEN:
DISPLAY @(-1) :
DISPLAY @(32,0) : "ORDER PROCESSING" :
DISPLAY @(0,3) : "Order No:"

DISPLAY @(20,3) : "Date:" :
DISPLAY @(0,5) : "Customer No:*
DISPLAY @(5,8) : "Part”

DISPLAY @(11,8) : "Description® :
DISPLAY @(48,8) : "Price” :
DISPLAY @(56,8) : "Qty" :

DISPLAY @(65,8) : "Total" :

DISPLAY @(48,14) : "Order Total:*
RETURN

Including the bar across the page and a brief comment at the head of the subroutine
aids readability of the program.

The GOSUB Statement

The above example subroutine could be called from elsewhere in the same program
module by a statement such as

GOSUB PAINT.SCREEN
The program continues execution at the first statement of the subroutine. When the
RETURN statement is executed, the subroutine exits back to the statement following

the GOSUB.

Internal subroutines may call other internal subroutines. There is a limit of 256 on
the depth of calls; a limit far higher than any well designed program would need.

The ON GOSUB Statement

Sometimes we wish to call one of a list of subroutines depending on the value in a
variable. The ON GOSUB statement can be used to do this.

INPUT FLD

ON FLD GOSUB SUBR1,
SUBR2,
SUBR3,
SUBR4

The ON GOSUB statement calls the first subroutine (SUBR1) if FLD is 1, the second
if FLD is 2, and so on. A real program would include some validation of the input
value.

2.12-4

176

Teach Yourself OpenQM

Exercise
Extend your ORDERS program to add the following functionality.

Use a CASE statement to process the data entered at the order number prompt. This
needs to provide separate processing paths for a null entry (which will be used to add
a new order), an entry of Q (which will terminate the program) and entry of a five
digit number (which will display the details of an existing order). Arrange for an
error message to be displayed if any other data is entered at this prompt.

After processing the input, loop back to ask for a further order number.

When the user enters Q at the order number prompt, exit from the loop, clear the
screen and terminate the program using a STOP statement.

The statements that clear the screen and display the fixed text should be moved into
a subroutine. This should be called before entering the main loop of the program and
at the end of the paths for a new order or display of an existing order.

Your input of the action code should also be moved into a subroutine. This should be
called immediately before repainting the screen at the end of processing a new or
existing order.

The action processing subroutine needs to contain validation of the response,
allowing D, F and X, each with its own processing path. Any other entry should
display an error and repeat the input.

2.12-4

Introduction to QMBasic Programming

Suggested Solution

177

Statements in bold face have been added to the program created in the first exercise.
Your program may look very different from this but our suggested solution may be a

good source of ideas.

PROGRAM ORDERS
PROMPT **
GOSUB PAINT .SCREEN
* Main loop - once per order

LOOP

INPUTERR "Enter order number, blank for next, Q to quit"

ORDER.NO = *=*
INPUT @(10,3) : ORDER.NO, 5
BEGIN CASE
CASE ORDER.NO = =~
* New order processing to be added here
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN

CASE ORDER.NO = *"Q-
EXIT

CASE ORDER.NO MATCHES "5N*
* Existing order processing to be added here
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN

CASE 1

INPUTERR "Order number must be 5 digits, blank for

new order, Q to quit-
END CASE
REPEAT
DISPLAY @(-1) :

STOP

* Paint fixed part of screen

PAINT.SCREEN:
DISPLAY @(-1)
DISPLAY @(32,0) : “ORDER PROCESSING*
DISPLAY @(0,3) : "Order No:-
DISPLAY @(20,3) : "Date:"
DISPLAY @(0,5) : "Customer No:*
DISPLAY @(5,8) : "Part-

2.12-4

178 Teach Yourself OpenQM

DISPLAY @(11,8) : "Description”
DISPLAY @(48,8) : "Price"

DISPLAY @(56,8) : "Qty-

DISPLAY @(65,8) : "Total"

DISPLAY @(48,14) : "Order Total:*
DISPLAY @(0,20) : "Action (F/D/X):*

RETURN

* Action prompt

ACTION.PROMPT :
LOOP
ACTION = ="
INPUT @(16,20) ACTION,3

BEGIN CASE
CASE ACTION = "D" ;* Delete
* Order deletion to be added here

EXIT

CASE ACTION = *"F* ;* File
* Order filing to be added here
EXIT

CASE ACTION = *X* ;* Exit
* Exit processing to be added here

EXIT

CASE 1
INPUTERR "File, Delete, eXit"
END CASE
REPEAT

RETURN
END

2.12-4

Introduction to QMBasic Programming 179

154

File Handling

A QM application typically uses many hundreds or, perhaps, thousands of files, each
holding data of some particular type. Our order processing system has only a few
files but allows us to explore all of the file handling features of QMBasic.

Files are defined by F-type records in the VOC. These records relate the internal
name of the file (the name of the VOC record) to the operating system pathname of
the data and dictionary parts of the file. This VOC record should be the only place
where the pathnames appear. If we move the file, all we need to change is the VOC
entry; the application software is not affected.

Every file normally consists of a data part holding the actual data records and a
dictionary part that holds records which describe the format of the data records.
BASIC programs do not normally use the dictionary to locate individual data fields.
Instead, the application designer normally builds a set of EQUATE tokens from the
dictionary and these are used in all operations that process data records. QM
provides a tool named GENERATE to construct this file automatically.

Using tokens for each field position makes the application more readable, simplifying
maintenance. Applications that refer directly to fields by number are very difficult to
understand. We will create a set of tokens for the files used in these exercises later.

A dictionary is just a file with a specific purpose in the system. Everything that we
discuss in this section applies to either the data or dictionary parts of the file unless
we explicitly say otherwise.

The OPEN Statement
The OPEN statement opens a file, associating it with a file variable.

OPEN {dict.expr,} Tilename.expr {READONLY} TO file.var
{ON ERROR statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
dict.expr evaluates to DICT to open the dictionary portion of the file or to
a null string to open the data portion. If omitted, the data
portion is opened.
filename.expr evaluates to the VOC name of the file to be opened.
READONLY specifies that the file is to be opened for read only access.

Attempts to update the file will cause a run time error. Note
that QM will automatically adopt read-only mode if the

2.12-4

180

Teach Yourself OpenQM

operating system permissions on the file permit reading but not
writing.

file.var is the name of the variable for use in later operations on this
file. This variable holds all of the control information used by
QM to manage access to the file. You cannot do anything with it
except to use it in file handling operations.

statement(s) are statements to be executed depending on the outcome of the
OPEN operation.

The ON ERROR, THEN and ELSE clauses are all optional but must appear in the
order specified. At least one of the THEN or ELSE clauses must be present. Each of
these clauses follows the same structure as the conditioned clauses of an IF
statement; there may be a single statement on the same line as the keyword or a
block of statements terminated by END.

The ON ERROR clause is taken only in the case of serious errors such as damage to
the file's internal control structures. The STATUS() function will return an error
number identifying the cause of the error. If no ON ERROR clause is present, a fatal
error results in an abort. This clause is rarely used because few programs can take
any sensible recovery action following such an error. We will not use ON ERROR
clauses in our programs.

The THEN clause is executed if the file is opened successfully.

The ELSE clause is executed if the open fails because, for example, the file does not
exist. The STATUS() function may be used to determine the cause of the failure.

Typically, an OPEN statement is written as
OPEN filename TO file.var ELSE STOP message

which will continue with the next statement if the file is opened successfully.

File variable names may be constructed in any way that the developer wishes. A
common convention is to shorten the file name to three or four characters and add a
suffix of .F to the name to show that it is a file variable. We will use this convention
throughout this course such that the file variable for our SALES file becomes SAL.F.
A useful extension is then to use names such as SAL.ID for SALES file record ids
and SAL.REC for records read from the file. These are conventions only and you may
use whatever names you like.

QM allows more files to be open than the underlying operating system limit. This is
achieved by closing files at the operating system level if they have not been
referenced recently whilst retaining information to reopen them automatically when
the next access to the file occurs. This process allows the application designer to
ignore operating system limits.

From an application developer's perspective, the file remains open for as long as the
file variable remains intact. When the program terminates, local variables are
discarded, implicitly closing the file. If a program overwrites the file variable, the file

2.12-4

Introduction to QMBasic Programming 181

previously open to it will be closed.

Examples
OPEN "SALES®" TO SAL.F ELSE STOP =Cannot open SALES file~

OPEN "", "SALES" TO SAL.F
ON ERROR
STOP “Fatal error opening SALES file. Error ": STATUSQ)
END ELSE
STOP *"Cannot open SALES file. Error " : STATUSQ)
END

Both of the above examples open the data part of the ORDERS file to a file variable
named SAL.F which will be used in later file handling operations.

The second example includes an ON ERROR clause to display the error code
returned by the STATUS() function. Similarly, the ELSE clause also displays the
error code. Note that this use of the ON ERROR clause may result in a less
informative diagnostic message being displayed than would have happened without
the ON ERROR clause.

The ON ERROR clause appears in most file handling statements. It is strongly

recommended that this clause is only used if there is some sensible recovery action
that can be performed by the program.

OPEN "DICT", "SALES" TO SAL.D
ELSE ABORT "Cannot open SALES file dictionary”

This example opens the dictionary of the SALES file to SAL.D.

2.12-4

182 Teach Yourself OpenQM

The READ Statement

The READ statement reads a record from a previously opened file into a variable as
a dynamic array.

READ var FROM file.var, record.id
{ON ERROR statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
var is the name of a variable to receive the dynamic array read
from the file.
file.var 1s the file variable associated with the file.
record.id evaluates to the id of the record to be read.
statement(s) are statements to be executed depending on the outcome of the

READ operation.
At least one of the THEN or ELSE clauses must be present.

The ON ERROR clause is executed for serious fault conditions such as errors in a
file's internal control structures. The STATUS() function will return an error
number. If no ON ERROR clause is present, an abort would occur. This clause is
rarely used.

The THEN clause is executed if the READ is successful. The specified record is read
into the named variable.

The ELSE clause is executed if the READ fails because no record with the given id is
present on the file. The var will be set to a null string.

Example

READ SAL.REC FROM SAL.F, ORDER.NO THEN
DISPLAY ORDER.NO
DISPLAY "Customer = " : SAL.REC<2>
END ELSE
DISPLAY "Order " : ORDER.NO: * not found*®
END

This program fragment reads a record from the a file previously opened to file
variable SAL.F into variable SAL.REC. If successful, the customer number is
displayed. If the record is not found, an error message is displayed.

Note that this example uses a field number when extracting the customer number
from the sales record. For a simple application with only a few files, each of which
has only a few fields, we might be able to remember all the field numbers. For a
realistic application, this approach can make maintenance difficult and error prone.

2.12-4

Introduction to QMBasic Programming 183

It is strongly recommended that EQUATE tokens are used to give names to fields.
Typically, these have a prefix that identifies the file and the rest of the name relates
to the field name. We will create some tokens that work this way later, using a prefix
of SL, ST or CS to correspond to our SALES, STOCK and CUSTOMERS files. The
relevant line of the above example might then become

DISPLAY "Customer = " : SAL.REC<SL.CUST>

Not only does this save us remembering the field numbers, it makes the program
easier to read and makes it possible to find all references to a field by searching for
the corresponding token name.

When accessing a directory file, QM normally translates newlines to field marks
when reading data and conversely translates field marks to newlines when writing
data. If the file being processed contains binary data such as a bit-mapped image,
this action will corrupt the data. Use of

MARK_MAPPING file.var, OFF

after opening the file will suppress the translation. A corresponding use of
MARK.MAPPING file.var, ON

will re-enable it though it is unusual to need to do this.

2.12-4

184

Teach Yourself OpenQM

The READU Statement

The READU statement reads a record from a previously opened file into a variable

as a dynamic array. It also takes an update lock on the record to prevent other users
updating the record at the same time. Only one user can hold an update lock on any
specific record at one time though many different locks may be held simultaneously.

READU var FROM file.var, record.id
{ON ERROR statement(s)}

{LOCKED statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
var is the name of a variable to receive the dynamic array read
from the file.
file.var 1s the file variable associated with the file.
record.id evaluates to the id of the record to be read.
statement(s) are statements to be executed depending on the outcome of the

READU operation.

At least one of the THEN or ELSE clauses must be present.

The ON ERROR clause is executed for serious fault conditions such as errors in a
file's internal control structures. The STATUS() function will return an error
number. If no ON ERROR clause is present, an abort would occur. This clause is
rarely used.

The LOCKED clause is executed if we are unable to complete the read because
another user has this record locked. The STATUS() function can be used to find the
user number of the user owning the lock. If no LOCKED clause is present, the
program waits for the lock to be released.

The THEN clause 1s executed if the READU is successful. The specified record is read
into the named variable. The process performing the READU now has an update lock
on the record to prevent interactions from other users.

The ELSE clause is executed if the READU fails because no record with the given id
is present on the file. The var will be set to a null string. Note that even though the
record does not exist, the process performing the READU now has an update lock on
the record to prevent interactions from other users.

Programs should always use the READU statement rather than READ when they
are going to add, modify or delete a record. Failure to do so may result in data
corruptions. The READ statement takes no part in the locking system and always
succeeds, even if another user has the record locked.

2.12-4

Introduction to QMBasic Programming 185

Examples

READU SAL.REC FROM SAL.F, ORDER.NO
LOCKED
DISPLAY ORDER_NO : * is locked by user * : STATUS(Q)
END THEN
processing statements
END ELSE
DISPLAY "Record " : ORDER.NO : " not found"
END

This program fragment extends the earlier example to include locking. If the record
is already locked by another user, the program displays that user's number.

READU SAL.REC FROM SAL.F, ORDER.NO

THEN

processing statements
END ELSE

DISPLAY "Record " : ORDER.NO : " not found"
END

Omitting the LOCKED clause would cause the program simply to wait for the record
to become available.

2.12-4

186

Teach Yourself OpenQM

The READL Statement

The READL statement reads a record from a previously opened file into a variable as
a dynamic array. It also takes a sharable read lock on the record. Any number of
users may hold a sharable read lock on the same record but no other user can own
the update lock.

READL var FROM file.var, record.id
{ON ERROR statement(s)}

{LOCKED statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
var is the name of a variable to receive the dynamic array read
from the file.
file.var 1s the file variable associated with the file.
record.id evaluates to the id of the record to be read.
statement(s) are statements to be executed depending on the outcome of the

READL operation.

At least one of the THEN or ELSE clauses must be present.

The ON ERROR clause is executed for serious fault conditions such as errors in a
file's internal control structures. The STATUS() function will return an error
number. If no ON ERROR clause is present, an abort would occur. This clause is
rarely used.

The LOCKED clause is executed if we are unable to complete the read because
another user has an update lock on this record. The STATUS() function can be used
to find the user number of the user owning the lock. If no LOCKED clause is present,
the program waits for the lock to be released.

The THEN clause is executed if the READL is successful. The specified record is read
into the named variable. The process performing the READL now has a sharable
read lock on the record to prevent interactions from other users.

The ELSE clause is executed if the READL fails because no record with the given id
is present on the file. The var will be set to a null string. Note that even though the
record does not exist, the process performing the READL now has a sharable read
lock on the record to prevent interactions from other users.

Programs should use the READL statement when they want to look at a record,
knowing that no other user may change it, but don't mind other users also looking at
the data.

2.12-4

Introduction to QMBasic Programming 187

The WRITE Statement

The WRITE statement writes a record to a file, replacing any existing record with
the same record id.

WRITE var TO file.var, record.id
{ON ERROR statement(s)}

where
var is the name of a variable containing the data to be written.
file.var 1s the file variable associated with the file.
record.id evaluates to the id of the record to be written.
statement(s) are statements to be executed depending on the outcome of the

WRITE.

The keyword ON may be used in place of TO.

The contents of var are written to the file. Any existing record of the same id is
replaced by this action. The WRITE statement releases any lock on this record.

The ON ERROR clause is executed for serious fault conditions such as running out of
disk space. The STATUS() function can be used to find the cause of the error. If no
ON ERROR clause is present, an abort would occur.

Example

LOOP
INPUT ORDER.NO
UNTIL ORDER.NO = **
READU SAL.REC FROM SAL.F, ORDER.NO THEN
INPUT NEW.CUST
SAL.REC<2> = NEW.CUST ;* Replace customer field
WRITE SAL.REC TO SAL.F, ORDER.NO
END ELSE
DISPLAY "Record " : ORDER.NO : " not found®
END
REPEAT

The WRITEU statement is similar to WRITE except that it does not release the lock.

2.12-4

188 Teach Yourself OpenQM

The DELETE Statement

The DELETE statement deletes a record from an open file.

DELETE file.var, record.id
{ON ERROR statement(s)}

where
file.var is a file variable for an open file.
record.id evaluates to the id of the record to be deleted.
statement(s) are statements to be executed if the delete fails.

The specified record is deleted from the file. No error occurs if the record does not
exist.

The DELETE statement also releases any lock on the record being deleted.

The STATUS() function can be used to determine the cause of execution of the ON
ERROR clause. A fatal error occurring when no ON ERROR clause is present will
cause an abort.

Example

READU SAL.REC FROM SAL.F, ORDER.NO THEN

DELETE SAL.F, ORDER.NO
END ELSE

DISPLAY "Record " : ORDER.NO : " not found"
END

The above program fragment deletes a record from the file. Note the use of READU
to lock the record first.

The DELETEU statement is similar to DELETE except that it does not release the
lock.

2.12-4

Introduction to QMBasic Programming 189

The RELEASE Statement

The RELEASE statement releases a record lock.

RELEASE {ON ERROR statement(s)}
RELEASE file.var {ON ERROR statement(s)}

RELEASE file.var, record.id {ON ERROR statement(s)}

where
file.var 1s the file variable associated with the file.
record.id evaluates to the key of the record to be unlocked.
statement(s) are statements to be executed if the action fails.

The RELEASE statement operates in three ways according to whether file.var and
record.id are specified.

With no file.var or record.id, all file, read and update locks owned by the process on
all files are released. This is very dangerous as it will release locks acquired by other
parts of the application.

With file.var but no record.id, is present all locks associated with file.var are
released. This is still slightly dangerous.

With both record.id and file.var, a specific lock is released.

The ON ERROR clause is executed if a fatal error occurs. The STATUS() function can
be used to obtain an error code to determine the cause.

Example

All of the earlier locking examples left the lock in place if they failed to read the
record. A RELEASE statement is needed to ensure that we do not collect unwanted
locks.

READU SAL.REC FROM SAL.F, ORDER.NO
LOCKED
DISPLAY ORDER_NO : = locked by user * : STATUSQ)
END THEN
processing statements
END ELSE
RELEASE SAL.F, ORDER.NO
DISPLAY "Record " : ORDER.NO : " not found"
END

2.12-4

190

Teach Yourself OpenQM

Checking for Locks - The LIST. READU Command

The LIST.READU command (not a program statement) can be used to check for
outstanding locks in the system. It should be used when testing applications to
ensure that locks are taken when required and released when no longer needed. It
can also be used if the system hangs to check if users are waiting for locks.

An example is shown below.

User File Path_.____________ . __.__._._._._.... Type

Id. ..
1 2 D:\SALES\STOCK RU P-174-43
1 2 D:\SALES\STOCK RU P-967-47
5 2 D:\SALES\STOCK RU P-954-55
2 4 D:\SALES\INVOICES FX
3 4 D:\SALES\INVOICES WAIT 17565

The lock type is shown as RL for shareable record locks, RU for record update locks
and FX for file locks. A type code of WAIT is shown for users waiting for locks.

In the above report, users 1 and 5 hold record update locks in file 2
(D:\SALES\STOCK) and user 2 has a file lock (discussed later) on file 4
(D:NSALESNINVOICES). User 3 is waiting to lock record 17565 in file 4 but is
blocked by user 2. Details of users waiting for locks are only shown if the WAIT
keyword is used in the LIST.READU command.

Deadlocks

A deadlock occurs when one process is waiting for a record locked by a second process
and the second process is waiting for a record locked by the first process.

Deadlocks are totally avoidable by good programming methods. Two simple to
describe (but often difficult to implement) techniques are available:

e Always lock records in a fixed order so that the situation can never occur.

e Use the LOCKED clause and, on finding that processing is blocked by some
other user, release all locks and start again.

2.12-4

Introduction to QMBasic Programming 191

The CLOSE Statement

The CLOSE statement closes a file previously opened using the OPEN statement.

CLOSE file.var
where

file.var is a file variable for an open file.

The file associated with the file variable will be closed. Any other file variable which
refers to the same file, either from a separate OPEN or from copying the file variable,
will be unaffected.

Files do not usually need to be closed explicitly. Local variables are released when a
program or subroutine returns and files associated with local file variables are closed
automatically. File variables in common blocks (discussed later) will not be affected.

The main reason to use CLOSE is to help the file sharing mechanism that provides
the illusion that we can open more files than the operating system allows. If we know
that we will not refer to a file again in the near future, closing it allows it to be
removed from the rotation mechanism rather than decaying through the file aging
process. This can result in a small performance improvement.

File Locks

Sometimes we find it useful to lock all records in a file. This may be because we are
going to update them all or it might be to guarantee a consistent view of the data
where no other user can change any records. The file lock allows us to do this.

The FILELOCK and FILEUNLOCK statements can be used to obtain and release

the file lock for a given file. A user can only obtain the file lock if no other user has

any lock of any type in the file. Conversely, while the file lock is held, no other user
can obtain locks on any records in the file.

FILELOCK file.var { LOCKED statement(s) }

FILEUNLOCK file.var

Clearly, the file lock is likely to have substantial effects on performance of a
multi-user application. It should be used with care.

2.12-4

192 Teach Yourself OpenQM

Exercise

This exercise will introduce use of an include record (discussed in the Introduction to
QMBasic Programming section) to add definitions of our field positions. Although we
will construct this record manually, a real application might use the GENERATE
tool to do this automatically from the dictionary. You can learn more about
GENERATE from the @M Reference Manual or the help system.

Use SED, ED or any other suitable text editor to create a record named FILES.H in
your BP file that contains the following:

* FILES.H - File definitions for order processing
application

* STOCK file

EQU ST.DESCR TO 1 ;* Item description

EQU ST.QTY TO 2 ;* Quantity on hand

EQU ST.PRICE TO 3 ;* Selling price (MD2)

* CUSTOMERS fTile

EQU CS.NAME TO 1 ;* Customer name

EQU CS._ADDR TO 2 ;* Address

EQU CS.TELNO TO 3 ;* Telephone

* SALES file

EQU SL._DATE TO 1 ;* Order date

EQU SL.CUST TO 2 ;* CUSTOMERS 1id

EQU SL.ITEM TO 3 ;* Part number (multi-valued)
EQU SL.QTY TO 4 ;* Order quantity (multi-valued)
EQU SL.PRICE TO 5 ;* Selling price (multi-valued)
EQU SL.PAYDATE TO 6 ;* Payment date

EQU SL.PAYMENT TO 7 ;* Payment value

Add the FILES.H include record to your program with a line
$INCLUDE FILES.H

just after the PROGRAM statement. This defines names for each field in the data
files. Use these in preference to field numbers in your program.

Add file handling statements to your ORDERS program to achieve the following:

Open the CUSTOMERS, STOCK and SALES files at the start, outside the main loop
of the program.

Develop a subroutine which, given an order record, will display the data from this
record. This subroutine should show the order date and customer number and should
call two further subroutines to show the customer details (name and address) and
order details (parts, quantities, prices, etc).

At this stage, the subroutine to show the customer details should display only the
customer's name. Display of the address will be added later. Your subroutine may
assume that any customer referenced by an order must exist in the CUSTOMERS
file.

2.12-4

Introduction to QMBasic Programming 193

The subroutine to display the order details should display up to five lines of order
information. We will explore how to allow more than five items in an order later. The
display should show the part number, description, selling price, quantity ordered and
line total value. The part number, selling price and quantity come from the order
record. You will need to read the corresponding STOCK record for each item to get
the description. The line total value is calculated simply by multiplying the quantity
by the selling price.

In the path for processing an existing order, add a READU statement to read the
order record.

If the record is locked by another user, display a suitable message.

If the order is successfully read, call subroutines developed above to display the data
from this order. On return, display the action prompt and repaint the screen.

If the order is not found, release the update lock and display a message.
In all cases, then return to the order number prompt

If all is working correctly, running your program for order number 12002 should
produce a screen similar to the one below.

ORDER PROCESSING

Order No: 12002 Date: 14400

Customer No: 1002 Ross, Alan

Part Description Price Qty Total
013 Pencil, blue 28 2 56
012 Pencil, red 28 3 84

Order Total:

Action (F/D/X):

The date and the prices are not yet shown correctly or aligned as we would like them.
We will address this problem in the next section.

2.12-4

194 Teach Yourself OpenQM

Suggested solution

Again, we have shown changes to the previous program in bold face.

PROGRAM ORDERS
$INCLUDE FILES.H
PROMPT =™

OPEN "CUSTOMERS®" TO CUS.F

ELSE ABORT *Cannot open CUSTOMERS file~
OPEN "STOCK®" TO STK.F

ELSE ABORT *Cannot open STOCK file~
OPEN "SALES" TO SAL.F

ELSE ABORT "Cannot open SALES file"

GOSUB PAINT.SCREEN
* Main loop - once per order

LOOP
INPUTERR "Enter order number, blank for next, Q to quit"

ORDER.NO = *=*
INPUT @(10,3) : ORDER.NO, 5
BEGIN CASE
CASE ORDER.NO = =~
* New order processing to be added here
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN

CASE ORDER.NO = *Q-
EXIT

CASE ORDER.NO MATCHES "5N*
READU SAL.REC FROM SAL.F, ORDER.NO LOCKED
INPUTERR "Record is locked by user * : STATUSQ)
END THEN
GOSUB PAINT.DATA
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN
END ELSE
RELEASE SAL.F, ORDER.NO
INPUTERR "Order * : ORDER.NO : " is not on file*
END

CASE 1
INPUTERR ~“Order number must be 5 digits, blank for
new order, Q to quit-”
END CASE
REPEAT

DISPLAY @(-1) :
STOP

2.12-4

Introduction to QMBasic Programming

* Paint fixed part of screen

PAINT . SCREEN:
DISPLAY @(-1)
DISPLAY @(32,0) : "ORDER PROCESSING*®
DISPLAY @(0,3) : "Order No:"
DISPLAY @(20,3) : "Date:"
DISPLAY @(0,5) : "Customer No:*
DISPLAY @(5,8) : "Part”
DISPLAY @(11,8) : "Description”
DISPLAY @(48,8) : "Price”
DISPLAY @(56,8) : "Qty-
DISPLAY @(65,8) : "Total"
DISPLAY @(48,14) : "Order Total:*
DISPLAY @(0,20) : "Action (F/D/X):*

RETURN

* Paint data from current order record
PAINT .DATA:
DISPLAY @(26,3) : SAL.REC<SL.DATE>
DISPLAY @(13,5) : SAL.REC<SL.CUST>
GOSUB DISPLAY.CUSTOMER.DETAILS
GOSUB DISPLAY .ORDER.LINES

RETURN

* Display customer details

DISPLAY .CUSTOMER.DETAILS:
CUST.NO = SAL.REC<SL.CUST>
READ CUS.REC FROM CUS.F, CUST.NO THEN
DISPLAY @(20,5) : CUS.REC<CS.NAME>
END

RETURN

* Show order details

DISPLAY .ORDER.LINES:
LN =9
FOR IDX = 1 TO 5
PART.NO = SAL.REC<SL.ITEM, IDX>
UNTIL PART.NO = **
PRICE = SAL.REC<SL.PRICE, IDX>

195

2.12-4

196 Teach Yourself OpenQM

QTY = SAL.REC<SL.QTY,IDX> + O
DISPLAY @(5,LN) : PART.NO
DISPLAY @(45,LN) : PRICE
DISPLAY @(55,LN) : QTY
READ STK_REC FROM STK.F, PART.NO THEN
DISPLAY @(11,LN) : STK.REC<ST.DESCR>[1,30]

DISPLAY @(61,LN) : PRICE * QTY
END

LN += 1
NEXT IDX

RETURN

* Action prompt

ACTION.PROMPT :
LOOP
ACTION = ="
INPUT @(16,20) ACTION,3

BEGIN CASE
CASE ACTION = *"D* ;* Delete

* Order deletion to be added here
EXIT

CASE ACTION = "F" ;* File

* Order filing to be added here
EXIT

CASE ACTION = *X" ;* ExIt

* Exit processing to be added here
EXIT

CASE 1
INPUTERR "File, Delete, eXit"
END CASE
REPEAT

RETURN
END

2.12-4

Introduction to QMBasic Programming 197

15.5

Conversion and Formatting

We discussed conversion and formatting earlier when we met database dictionaries.
Application programs need to use both of these concepts internally.

Data conversion changes the way in which the data is represented. For example, we
store dates as a number of days from a reference date.

Formatting positions the data in a given field width, applying justification and other
features to control its appearance.

Data Conversion

Data conversion is performed by applying a conversion code. The codes that we
use in our BASIC programs are the same as those that appear in dictionary
definitions of our database files.

We need to be able to convert data from its external form to its internal form when

data arrives from the terminal or other sources. This input conversion is performed
using the ICONV() function.

We need to convert the internal form of the data back to its external form when
displaying it back to the user, printing reports, etc. This output conversion is

performed by the OCONV() function.

Both functions have the same form:

ICONV(data, code)
OCONV(data, code)

where
data 1is the data to be converted.
code 1s the conversion code to be applied.
The functions return the converted data as their result.

Conversion may fail for a number of reasons. The STATUS() function can be used to
test whether the conversion was successful. This returns:

Successful conversion
The data cannot be converted using the given conversion code.

The conversion code is not recognised.

w N = O

A date conversion contains a faulty date (e.g. 31 April) which has been
converted to a likely date (1 May in this example).

Input conversion of dates using the ICONV() function tries to interpret dates even if
the format in which they are entered does not fully match the conversion code. This

2.12-4

198

Teach Yourself OpenQM

allows some flexibility in user entry of date fields.

Input conversion of dates with two digit year numbers assumes that
30-99 1s 19xx
00-29 1s 20xx

Example

DISPLAY "Time now is " : OCONV(TIMEQ), "MTS.™)

This statement displays the current time as a 24 hour clock value with seconds and
using the full stop as the separator.

Related Functions

Conversion of a character string to uppercase can be performed using the UPCASE()
function. Similarly, conversion to lowercase is provided by the DOWNCASE()
function.

A Practical Example of Input Validation with Conversion

The following few lines of QMBasic program can be used for any input validation
where a conversion code is to be applied.

LOOP
TEMP = OCONV(data, code)
INPUT @(col, row) TEMP, width_:
TEMP = ICONV(TEMP, code)
UNTIL STATUSQ =0
INPUTERR "Invalid input®
REPEAT
data = TEMP
DISPLAY @(col, row) : OCONV(data, conv)

Note how the data is converted to its external form for display and modification by
the user and then immediately converted back to its internal form. By keeping the
converted data in the temporary variable, the original data has not been lost if the
validation fails.

In most cases, the ICONV() function does all the data validation for us. We need only
test that the conversion was successful by using the STATUS() function.

Finally, we redisplay the data to ensure that it is in its correct form (decimal places,
currency symbol, etc).

2.12-4

Introduction to QMBasic Programming 199

Formatting

The FMT() function performs data formatting according to a format specification.
This is identical to the format codes described earlier when we explored dictionaries.
The FMT() function is typically used to convert data for display or printing.

FMT (expr, fmt.spec)
where
expr evaluates to the data to be formatted

fmt.spec evaluates to the format specification.

Shortform Notation

The FMT() function action can also be performed in programs by use of a shortform
notation in which the expr and fmt.spec are simply written next to each other with no
operator in between.

Thus

X = FMT(A, "8R")
can be written as

X = A "8R"

2.12-4

200

Teach Yourself OpenQM

Exercise

Amend your ORDERS program to add conversion of the order date to a suitable
format and conversion of the price fields.

To simplify maintenance of your program, you could use an EQUATE token for the
two conversion codes. If you later decide to change the conversion, you need only

change the value of this token, not every reference within the program.

If all is working correctly, order number 12002 should now appear as below.

ORDER PROCESSING

Order No: 12002 Date: 04 JUN 07

Customer No: 1002 Ross, Alan

Part Description Price Qty
Total

013 Pencil, blue 0.28 2
0.56

012 Pencil, red 0.28 3
0.84

Order Total:

Action (F/D/X):

2.12-4

Introduction to QMBasic Programming 201

Suggested solution

Again, we have shown changes to the previous program in bold face.

PROGRAM ORDERS

$INCLUDE FILES.H
EQU DATE.CONVERSION TO "D2DMY[,A3]"
EQU CASH.CONVERSION TO *MD2*

PROMPT =™

OPEN "CUSTOMERS®" TO CUS.F

ELSE ABORT *Cannot open CUSTOMERS file~
OPEN "STOCK®" TO STK.F

ELSE ABORT *Cannot open STOCK file~
OPEN "SALES" TO SAL.F

ELSE ABORT "Cannot open SALES file"

GOSUB PAINT.SCREEN
* Main loop - once per order

LOOP
INPUTERR "Enter order number, blank for next, Q to quit"

ORDER.NO = *=*
INPUT @(10,3) : ORDER.NO, 5
BEGIN CASE
CASE ORDER.NO = =~
* New order processing to be added here
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN

CASE ORDER.NO = *Q-
EXIT

CASE ORDER.NO MATCHES "5N*
READU SAL.REC FROM SAL.F, ORDER.NO LOCKED
INPUTERR "Record is locked by user * : STATUSQ
END THEN
GOSUB PAINT.DATA
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN
END ELSE
RELEASE SAL.F, ORDER.NO
INPUTERR "Order * : ORDER.NO : * is not on file*
END

CASE 1
INPUTERR "Order number must be 5 digits, blank for
new order, Q to quit-”
END CASE
REPEAT

DISPLAY @(-1) :

2.12-4

202

Teach Yourself OpenQM

* Paint fixed part of screen

PAINT . SCREEN:

DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY
DISPLAY

RETURN

e(-1)

@(32,0) : "ORDER PROCESSING*
@(0,3) : “Order No:-
@(20,3) : T"Date:*

@(0,5) : "Customer No:*
@(5,8) : "Part-

@(11,8) : "Description”
@(48,8) : "Price-

@(56,8) - "Qty"

@(65,8) : "Total*

@(48,14) : "Order Total:*
@(0,20) : “Action (F/D/X):*

* Paint data from current order record

PAINT .DATA:
DISPLAY
DISPLAY

@(26,3) : OCONV(SAL.REC<SL.DATE>, DATE.CONVERSION)
@(13,5) : SAL.REC<SL.CUST>

GOSUB DISPLAY .CUSTOMER.DETAILS

GOSUB DISPLAY.ORDER.LINES

RETURN

* Display customer details

DISPLAY .CUSTOMER.DETAILS:

CUST.NO

= SAL.REC<SL.CUST>

READ CUS.REC FROM CUS.F, CUST.NO THEN
DISPLAY @(20,5) : CUS.REC<CS.NAME>

END
RETURN

* Show order details

DISPLAY .ORDER.LINES:

LN =9
FOR 1DX
PART .

=1T05
NO = SAL.REC<SL.ITEM, IDX>

UNTIL PART.NO = **
PRICE = SAL.REC<SL.PRICE, IDX>

2.12-4

Introduction to QMBasic Programming 203

QTY = SAL.REC<SL.QTY,IDX> + O
DISPLAY @(5,LN) : PART.NO
DISPLAY @(45,LN) : FMT(OCONV(PRICE, CASH.CONVERSION),
“7R")
DISPLAY @(55,LN) : FMT(QTY, "4R")
READ STK_REC FROM STK.F, PART.NO THEN
DISPLAY @(11,LN) : STK.REC<ST.DESCR>[1,30]
DISPLAY @(61,LN) : FMT(OCONV(PRICE * QTY,
CASH.CONVERSION), "9R")
END
LN += 1
NEXT 1DX

RETURN

* Action prompt

ACTION.PROMPT :
LOOP
ACTION = ="
INPUT @(16,20) ACTION,3

BEGIN CASE
CASE ACTION = *"D" ;* Delete
* Order deletion to be added here
EXIT

CASE ACTION = *"F* ;* File
* Order filing to be added here
EXIT

CASE ACTION = *X* ;* Exit
* Exit processing to be added here
EXIT

CASE 1
INPUTERR "File, Delete, eXit"
END CASE
REPEAT

RETURN
END

2.12-4

204

Teach Yourself OpenQM

Once you are happy that this is working correctly, modify your program to allow
entry of new orders.

When the user enters a blank order number, display *new*' in the order number
field. Think about why we should not generate the next order number at this point.

Set the variable you are using to hold the order record to a null string and then
insert today's date into the correct field. You can get the current date in its internal
form from the DATE() function. Display this date on the screen.

Call a new subroutine to prompt for a customer number and insert this into the order
record. This subroutine should validate that the customer exists in the CUSTOMERS
file.

Call your existing subroutine to display the customer's name.

Call a new subroutine to get the order details (part numbers and quantities). This
can be constructed by making a copy of the subroutine that displays this information
from existing orders and changing it to prompt for the part number and quantity.
Include some validation of this input data. The subroutine should allow a maximum
of five order lines but should exit if a blank part number is entered.

Modify the handling of the action prompt to write the new order if the user enters 'F'.
When writing a new order, you will need to get the next order number from
somewhere. Many applications have a central file to store this sort of information.
We will use an X-type record in the dictionary of the SALES file.

Add statements for the 'X' response to the action prompt to release the lock if we are
processing an existing order.

Check that your program allows entry of new orders and that the generated order
number is correctly incremented as each order is entered. Check that you can
correctly display an order that you have entered.

2.12-4

Introduction to QMBasic Programming 205

Suggested solution

This example uses a record named NEXT.ID in the dictionary of the SALES file to
hold the next order number. This should start out as something like

1: X

2: 14000
where 14000 is the next order number to be created. This will be incremented by the
program each time a new order is filed.

PROGRAM ORDERS

$INCLUDE FILES.H
EQU DATE.CONVERSION TO "D2DMY[,A3]"
EQU CASH.CONVERSION TO *MD2*"

PROMPT =™

OPEN "CUSTOMERS®" TO CUS.F
ELSE ABORT "Cannot open CUSTOMERS file*
OPEN "STOCK®" TO STK.F
ELSE ABORT "Cannot open STOCK file*
OPEN "SALES" TO SAL.F
ELSE ABORT "Cannot open SALES file"
OPEN "DICT", "SALES®" TO SAL.D
ELSE ABORT "Cannot open SALES dictionary”

GOSUB PAINT.SCREEN
* Main loop - once per order

LOOP
INPUTERR "Enter order number, blank for next, Q to quit"

ORDER.NO = **
INPUT @(10,3) : ORDER.NO, 5_
BEGIN CASE
CASE ORDER.NO = **
DISPLAY @(10,3) : "*new*"

SAL.REC = **

OLD.SAL.REC = **

SAL.REC<SL.DATE> = DATEQ)

DISPLAY @(26,3) : OCONV(SAL.REC<SL.DATE>,
DATE.CONVERSION) :

GOSUB GET.CUST.NO
GOSUB DISPLAY.CUSTOMER.DETAILS

GOSUB GET.ORDER.DETAILS
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN

CASE ORDER.NO = *Q-
EXIT

2.12-4

206

Teach Yourself OpenQM

CASE ORDER.NO MATCHES

I5NI

READU SAL_.REC FROM SAL.F, ORDER.NO LOCKED

INPUTERR “Record is locked by user * :

STATUSQ

END THEN
GOSUB PAINT .DATA
GOSUB ACTION.PROMPT
GOSUB PAINT.SCREEN
END ELSE
RELEASE SAL.F, ORDER.NO

INPUTERR

END

CASE 1

"Order " : ORDER.NO : *" is not on file"

INPUTERR ~“Order number must be 5 digits, blank for

new order, Q to qui
END CASE
REPEAT
DISPLAY @(-1) :

STOP

* Paint fixed part

PAINT .SCREEN:
DISPLAY @(-1)
DISPLAY @(32,0)
DISPLAY @(0,3)
DISPLAY @(20,3)
DISPLAY @(0,5)
DISPLAY @(5,8)
DISPLAY @(11,8)
DISPLAY @(48,8)
DISPLAY @(56,8)
DISPLAY @(65,8)
DISPLAY @(48,14)
DISPLAY @(0,20)

RETURN

t-

of screen

. "ORDER PROCESSING*®
: "Order No:-
: "Date:"
"Customer
- "Part-
: "Description”
: "Price”
T "Qty”
: "Total”"
: "Order Total:"
: "Action (F/D/X):*

No: ™

* Paint data from current order record

PAINT.DATA:
DISPLAY @(26,3)
DISPLAY @(13,5)

: OCONV(SAL.REC<SL.DATE>, DATE.CONVERSION)
: SAL.REC<SL.CUST>

GOSUB DISPLAY .CUSTOMER.DETAILS

GOSUB DISPLAY.ORDER.LINES

RETURN

* Display customer

details

2.12-4

Introduction to QMBasic Programming 207

DISPLAY .CUSTOMER.DETAILS:
CUST.NO = SAL.REC<SL.CUST>
READ CUS.REC FROM CUS.F, CUST.NO THEN
DISPLAY @(20,5) : CUS.REC<CS.NAME>
END

RETURN

* Show order details

DISPLAY .ORDER. LINES:
LN = 9
FOR IDX = 1 TO 5
PART_NO = SAL_REC<SL.ITEM, IDX>
UNTIL PART.NO = **
PRICE = SAL.REC<SL.PRICE, IDX>
QTY = SAL.REC<SL.QTY,IDX> + O
DISPLAY @(5,LN) : PART.NO
DISPLAY @(45,LN) : FMT(OCONV(PRICE, CASH.CONVERSION),
“7R")
DISPLAY @(55,LN) : FMT(QTY, "4R")
READ STK_REC FROM STK.F, PART.NO THEN
DISPLAY @(11,LN) : STK.REC<ST.DESCR>[1,30]
DISPLAY @(61,LN) : FMT(OCONV(PRICE * QTY,
CASH.CONVERSION), "9R")
END
LN += 1
NEXT 1DX

RETURN

* Get customer number

GET.CUST.NO:
CUST.NO = "~
LOOP
INPUT @(13,5) : CUST-NO, 4_:
READ CUS.REC FROM CUS.F, CUST.NO THEN EXIT
INPUTERR "'Customer ' : CUST.NO : " is not known"
REPEAT

SAL.REC<SL.CUST> = CUST.NO

RETURN

* Get new order details

GET.ORDER.DETAILS:
LN =9
FOR IDX = 1 TO 5

2.12-4

208 Teach Yourself OpenQM

LOOP
PART.NO = **
INPUT @(5,LN) PART.NO, 3_:
UNTIL PART.NO = **
READ STK.REC FROM STK.F, PART.NO THEN EXIT
INPUTERR "Part number is not known*®
REPEAT

UNTIL PART.NO = **

PRICE = STK.REC<ST.PRICE>
DISPLAY @(11,LN) : STK.REC<ST.DESCR>[1,30] :
DISPLAY @(45,LN) : FMT(OCONV(PRICE,
CASH.CONVERSION), "7R"):

LOOP
QTY = =*
INPUT @(55,LN) QTY,4 :
UNTIL QTY MATCHES "1-4N" AND QTY > O
INPUTERR "Invalid quantity®
REPEAT
DISPLAY @(55,LN) : FMT(QTY, "4R") :
DISPLAY @(61,LN) : FMT(OCONV(PRICE * QTY,
CASH.CONVERSION), "9R") :

SAL _REC<SL.ITEM, IDX> = PART.NO
SAL _REC<SL.QTY, IDX> = QTY
SAL _REC<SL.PRICE, IDX> = PRICE

LN += 1
NEXT IDX

RETURN

* Action prompt

ACTION.PROMPT :
LOOP
ACTION = ="
INPUT @(16,20) ACTION,3

BEGIN CASE
CASE ACTION = *"D" ;* Delete
* Order deletion to be added here
EXIT

CASE ACTION = "F* ;* File
* IT we are creating a new order, we have left
* generating the order number until now.

IF ORDER.NO = ** THEN
READU NEXT.ORDER FROM SAL.D, "NEXT.ID"
ELSE ABORT "Cannot find next order number-
ORDER.NO = NEXT.ORDER<2>

2.12-4

Introduction to QMBasic Programming 209

NEXT.ORDER<2> = ORDER.NO + 1
WRITE NEXT.ORDER TO SAL.D, "NEXT.ID"
DISPLAY @(10,3) : ORDER.NO :

END

WRITE SAL.REC TO SAL.F, ORDER.NO

DISPLAY @(0,23) : "Order confirmed. Press return® :
INPUT JUNK, 1 :

EXIT

CASE ACTION = *X* ;* ExIt
IF ORDER.NO # "" THEN RELEASE SAL.F, ORDER.NO
EXIT

CASE 1
INPUTERR "File, Delete, eXit"
END CASE
REPEAT

RETURN
END

Additional Exercises

If you find the time now or later you might like to try to add some of the following
optional extra features to your program.

Refuse to file an order that has no products in it.

When a user enters the quantity against a product, check that there is sufficient
stock to meet this order.

Adjust the STOCK file QTY figure to remove items from stock when they are sold.
This is not as easy as it sounds as there are locking issues to consider.

When entering a new order, if the user selects the 'X' option to abandon the order,
put any ordered items back into stock.

Add statements to process the 'D' option to delete an order, putting any items back
into stock.

Add a new option to modify an existing order, putting back into stock any items
removed from the order. Again this is not trivial. What happens if the user modifies
the order and then selects the X' option of the action prompt?

Make the five lines of order details into a rolling window or a paginated display. This
is not as difficult as it sounds but requires that you separate the counters that
determine screen line position and order value position so that the screen can show
any five consecutive parts from the order.

2.12-4

210

Teach Yourself OpenQM

15.6

String Manipulation

This module describes some of the many string manipulation statements and
functions available in QMBasic. Most of the operations related to strings which hold
dynamic arrays are the subject of another module.

The main string handling statements and functions are listed below. Some of these
have already been discussed in earlier modules.

ALPHA()
CHANGE()
CHAR()
COL1()
COL2()
COMPARE()
CONVERT
CONVERT()
COUNT()
DOWNCASE()
FIELD()
FIELDSTORE()
INDEX()
LEN()
MATCHFIELD()
NUM()

SEQQ
SOUNDEX()
SPACE()
STR()

TRIM()
TRIMB()
TRIMF()
UPCASE()

Test if a string holds only alphabetic characters
Replace substring in a string

Get ASCII character for a given collating sequence value
Start of substring position from FIELD()

End of substring position from FIELD()
Compare strings

Substitute characters with replacements
Substitute characters with replacements

Count occurrences of a substring in a string
Convert a string to lowercase

Extract delimited fields

Replace or insert delimited fields

Locate occurrence of a substring within a string
Return length of a string

Return portion of a string matching pattern
Test if a string holds a numeric value

Get collating sequence value for a given ASCII character
Form a soundex code value for a string

Create a string of spaces

Create a string from a repeated substring

Trim characters from a string

Trim spaces from back of a string

Trim spaces from front of a string

Convert a string to uppercase

2.12-4

Introduction to QMBasic Programming 211

The CHANGE() Function

The CHANGEY() function replaces one sequence of characters with another.

CHANGE(str, old, new {, occ {, start }})

where
str is the string in which replacement is to occur.
old is the substring to be replaced.
new is the replacement substring.
occ is the number of occurrences of old to replace. If omitted or less than
one, all occurrences are replaced.
start specifies the first occurrence of old to replace. If omitted, it defaults to
one.
Example

DISPLAY CHANGE(CUS.REC<2>, Q@VM, ", %)

This statement displays the result of changing all value marks in field 2 of CUS.REC
(perhaps the address field of our CUSTOMERS file) to be a comma followed by a
space. Thus an address stored internally as

121 Stoke RoadwMansfield

would be displayed as
121 Stoke Road, Mansfield

2.12-4

212 Teach Yourself OpenQM

The CONVERT() Function

The CONVERT() function creates a string which is a copy of some other string in
which one set of characters is replaced by another set of characters.

CONVERT(old, new, str)
where
old 1s the set of characters to be replaced.
new 1s the corresponding set of replacement characters.
str is the string in which replacement is to occur.
The CONVERT() function returns the converted string as its result value.

Every occurrence of each character is old within str is replaced by the corresponding
character from new. For example,

A = "A sample string to be converted"
DISPLAY CONVERT(ert', "XYZ", A)
would display

A samplX sZYing Zo bX convXYzZXd

If old contains more characters than new, occurrences of the old characters for which
there is no replacement are removed from the converted string.

A = "A sample string to be converted"
DISPLAY CONVERT(ert™, "X, A)
would display

A samplX sing o bX convXXd

This provides an easy way to test whether a character string contains only a given
set of characters. If we use the CONVERT() function to remove all the valid
characters, anything that is left must be an invalid character.

LOOP
INPUT @(16,5) ISBN, 13 :

UNTIL CONVERT("0123456789X-", "", ISBN) = *"*
INPUTERR "Invalid I1SBN*

REPEAT

2.12-4

Introduction to QMBasic Programming 213

The CONVERT Statement

The CONVERT statement is similar to the CONVERT() function except that the
result overwrites the original source string.

CONVERT old TO new IN str
where
old 1is the set of characters to be replaced.
new 1s the corresponding set of replacement characters.
str is the string in which replacement is to occur.

A statement such as
CONVERT *"A®" TO "B" IN S

is identical in effect to
S = CONVERT("A", "B, S)

The COMPARE() Function

The COMPARE() function compares two strings, returning a value indicating their
correct order in the character sorting sequence.

COMPARE(strl1, str2 {, just })
where
strl 1s the first string to be compared.
str2 1s the second string to be compared.
just 1is L for a left justified comparison, R for a right justified comparison. If

omitted, a left justified comparison is performed.

The COMPARE() function returns
-1 strl is before str2
0 strlis the same as str2
1 strl is after str2

When performing a right justified comparison, spaces are added to the start of the
shorter string to make them of equal length and they are then compared character

by character from the left hand end.

Note in particular the result of the following two tests:

2.12-4

214 Teach Yourself OpenQM

0" = 00" returns true as a numeric comparison is performed.

COMPARE("0","00") returns -1 as a string comparison is performed.

The INDEX() Function

The INDEX() function returns the position of a specified occurrence of a substring
within a string.

INDEX(string, substring, occurrence)

where
string is the string in which the search is to occur.
substring evaluates to the substring to be located.

occurrence evaluates to the occurrence of the substring to be located.
The INDEX() function locates the specified occurrence of substring within string and
returns its character position.

If occurrence is less than one or the desired occurrence of substring is not found, the
INDEX() function returns zero.

If substring is null, the value of occurrence is returned.

Example

ISBN = "1-102-42464-3"
N = INDEX(ISBN, "-", 3)

This statement assigns N with the character position of the third hyphen in variable
ISBN (12).

2.12-4

Introduction to QMBasic Programming

The COUNT() Function

The COUNTY() function counts occurrences of a substring within a string.

COUNT(string, substring)

where

string evaluates to the string in which substrings are to be counted.

substring evaluates to the substring to count.

The COUNT() function counts occurrences of substring within string.

Examples

ISBN = "1-463-29233-2"
NUM_.HYPHENS = COUNT(ISBN, "-%)

This program fragment counts the hyphens in ISBN (3).

Substrings may not overlap. Thus

S = "ABABABABABAB"
N = COUNT(S, "ABA™)
sets N to 3.

If substring is null, COUNT() returns the length of string.

215

2.12-4

216 Teach Yourself OpenQM

The FIELD() Function

The FIELD() function returns one or more delimited substrings from a string.

FIELD(string, delimiter, occurrence {, count})

where
string 1s the string from which substrings are to be extracted.
delimiter evaluates to the delimiter character.

occurrence evaluates to the position of the substring to be extracted. If less
than one, the first substring is extracted.

count evaluates to the number of substrings to be extracted. If omitted or
less than one, one substring is extracted.

The FIELD() function extracts count substrings starting at substring occurrence
from string. Substrings within string are delimited by the first character of delimiter.
If delimiter is a null string, the entire string is returned.

If the value of occurrence is greater than the number of delimited substrings in string
, a null string is returned.

If the value of count is greater than the number of delimited substrings in string
starting at substring occurrence, the remainder of string is returned. Additional
delimiters are not inserted.

The COL1() and COL2() functions can be used to find the character positions of the
extracted substring.

Examples
A = 'M1*F2*3*4*5"
S = FIELDCA, "', 2, 3)

This program fragment assigns the string "2*3*4" to variable S.

ISBN = "1-485-46324-4"
PART3 = FIELD(ISBN, "-", 3)
Cl = COL1Q)

c2 = coL2Q)

In this example, PARTS is set to "46324", C1 is set to 6 and C2 is set to 12.

2.12-4

Introduction to QMBasic Programming 217

Trimming Character Strings

The TRIM() function removes excess characters from a string.

TRIM(string)
TRIM(string, character{, mode})

where
string evaluates to the string to be trimmed.
character 1is the character to be removed

mode evaluates to a single character which determines the mode of
trimming:
A Remove all occurrences of character.
B Remove all leading and trailing occurrences of character.

D Remove all leading and trailing spaces, replacing multiple
embedded spaces with a single space. The value of character is
ignored.

Remove all trailing spaces. The value of character is ignored.
Remove all leading spaces. The value of character is ignored.
Remove all leading occurrences of character.

= Bl e S Bl 5|

Remove all leading and trailing occurrences of character,
replacing multiple embedded instances of character with a
single character. This is the default.

T Remove all trailing occurrences of character.

The first format of the TRIM() function removes all leading and trailing spaces from
string and replaces multiple embedded spaces by a single space.

The second form is more generalised and allows other characters to be removed.

Examples
X=" 12 3 "
Y = TRIM(X)

This program fragment removes excess spaces from string X setting Y to "1 2 3"

X
Y

"' ABRACADABRA"
TRIM(X, "A", "A")

This program fragment removes all occurrence of the letter A from string X setting Y
to "'BRCDBR""

2.12-4

218

Teach Yourself OpenQM

X
Y

"' ABRACADABRA"
TRIM(X, "A", "B")

This program fragment removes leading and trailing occurrences of the letter A from

string X setting Y to ""BRACADABR"

TRIMB() and TRIMF()

The TRIMB() function removes spaces from the back of a string. The TRIMF()
function removes spaces from the front of a string.

TRIMB(string)

TRIMF(string)
where

string evaluates to the string to be trimmed.
Example

A=" 1 2 3 "

DISPLAY *"* : TRIMB(A) : ="~
DISPLAY *"* : TRIMFCA) : ="~

This program displays
1 2 3"
1. 2 3 "

2.12-4

Introduction to QMBasic Programming 219

The LEN() Function

The LEN() function returns the length of a string including any trailing spaces.

LEN(string)
where

string is the string for which the length is to be returned.

Example

LOOP
DISPLAY "Enter account number:
INPUT ACCOUNT.NO
WHILE LENCACCOUNT.NO) # 6
INPUTERR "Invalid account number™
REPEAT

This program fragment prompts for and inputs an account number. If it is not six
characters in length, an error is displayed and the prompt is repeated.

The SPACE() Function

The SPACE() function returns a string consisting of a given number of spaces.

SPACE(count)
where
count evaluates to the desired number of spaces.

The SPACE() function is a useful way to generate multiple spaces. It can aid
readability of programs by removing the need for space filled strings and it can be
used to provide variable numbers of spaces where required.

Example

DISPLAY SPACE(CINDENT) : TEXT

This statement displays the contents of TEXT indented by the number of spaces
specified by INDENT.

2.12-4

220

Teach Yourself OpenQM

The STR() Function

The STR() function returns a string made up of a given number of repeated
occurrences of another string.

STR(string, count)

where
string evaluates to the string to be repeated.
count evaluates to the number of repeats of string that are required.

The STR() function returns count occurrences of string. If count is less than one, a
null string is returned.

Example

DISPLAY STR("™', 79)

This statement displays a line of 79 asterisks.

2.12-4

Introduction to QMBasic Programming 221

The MATCHFIELD() Function

The MATCHFIELD() function extracts a portion of a string that matches a pattern
element.

MATCHFIELD(string, pattern, element)
where

string evaluates to the string in which the pattern is to be located.

pattern evaluates to a template as described below.

element evaluates to an integer indicating which pattern element of string is to

be returned.

The MATCHFIELD() function matches string against pattern and returns the
portion of string that matches the element'th component of pattern.

The pattern string consists of one or more concatenated items from the following list.

Zero or more characters of any type

0X Zero or more characters of any type

nX Exactly n characters of any type

n-mX Between n and m characters of any type
0A Zero or more alphabetic characters

nA Exactly n alphabetic characters

n-mA Between n and m alphabetic characters
ON Zero or more numeric characters

nN Exactly n numeric characters

n-mN Between n and m numeric characters

"string" A literal string which must match exactly. Either single or double
quotation marks may be used.

The values n and m are integers with any number of digits. m must be greater than
or equal to n.

The 0A, nA, ON, nN and "string" patterns may be preceded by a tilde (~) to invert the
match condition. For example, ~4N matches four non-numeric characters such as
ABCD (not a string which is not four numeric characters such as 12C4).

The MATCHFIELD() function returns a null string if the string does not completely
match the pattern.

Examples

DISPLAY MATCHFIELD('ABC12DEF', '"OA2NOA'™, 2)
display the string "12".

2.12-4

222

Teach Yourself OpenQM

TEL.NO = '01604-709200"
LOCAL.NO = MATCHFIELD(TEL-NO, "ON"-"ON", 3)

This program fragment extracts the local part of a telephone number (709200 in this
case).

The CHAR() and SEQ() Functions

The CHAR() function returns the character with a given ASCII collating sequence
value. The SEQ() function returns the ASCII collating sequence value for a given
character.

CHAR(seq)
SEQ(chr)

where
seq evaluates to an integer in the range 0 to 255.
chr evaluates to a single character.
The CHAR() function returns a single character string containing the ASCII

character with value seq. It is the inverse of the SEQ() function which returns the
ASCII sequence value of the supplied character.

Example

DISPLAY CHAR(7)

This statement outputs character 7 of the ASCII character set to the display.
Character 7 is the BELL character and causes the audible warning to sound. This is
similar to use of the @SYS.BELL variable except that CHAR(7) 1s not affected by use
of the BELL OFF verb and will always work.

2.12-4

Introduction to QMBasic Programming 223

Exercise
Modify your ORDERS program to display the customer's address. This should be
displayed under the customer's name and with the lines of the address merged, each

separated by a comma and a space.

Order 12002 should now appear as shown below.

ORDER PROCESSING

Order No: 12002 Date: 04 JUN 07

Customer No: 1002 Ross, Alan
47 Warren Road, Hansworth, Birmingham

Part Description Price Qty
Total

013 Pencil, blue 0.28 2
0.56

012 Pencil, red 0.28 3
0.84

Order Total:

Action (F/D/X):

2.12-4

224

Teach Yourself OpenQM

Suggested Solution

This time, we have only shown the modified subroutine.

* Display customer details

DISPLAY .CUSTOMER.DETAILS:
CUST.NO = SAL.REC<SL.CUST>
READ CUS.REC FROM CUS.F, CUST.NO THEN
DISPLAY @(20,5) : CUS.REC<CS.NAME>
DISPLAY @(20,6) : CHANGE(CUS.REC<CS.ADDR>, @VM,
END

RETURN

")

2.12-4

Introduction to QMBasic Programming 205

15.7 Dynamic Arrays

We have already seen some simple dynamic array handling operations in previous
modules and you have used these in your programs. In this module, we will look at
some of the more powerful features available with dynamic arrays.

Multi-valued Functions

There are a number of functions that provide multi-valued equivalents of other
functions that we have already seen. In each case, these work element by element
through the dynamic arrays passed into the functions, performing the operation on
each element in turn to produce an equivalent dynamic array of results.

For example, if we have two dynamic arrays

A contains ABCenDEFrnGHI
and
B contains 123ru456r789

We can concatenate these two dynamic arrays in two ways:

C=A:8B sets C to "ABCrvDEFrmiGHI123rm4567m789"
C CATS(A, B) sets Cto"ABC123rnDEF456rvGHI789"

The multi-valued string functions available are

CATS() Concatenate elements of a dynamic array
COUNTS() Multi-valued variant of COUNT()

FIELDS() Multi-valued variant of FIELD()

FMTS() Format elements of a dynamic array
ICONVS() Perform input conversion on a dynamic array
INDEXS() Multi-valued equivalent of INDEX()

NUMS() Multi-valued variant of NUM()

OCONVS() Perform output conversion on a dynamic array
SPACES() Multi-valued variant of SPACE()

STRS() Multi-valued variant of STR()
SUBSTRINGS() Multi-valued substring extraction

TRIMBS() Multi-valued variant of TRIMB()

TRIMFS() Multi-valued variant of TRIMF()

TRIMS() Multi-valued variant of TRIM()

There are also a number of multi-valued logical functions. These provide equivalents
to the relational operators and other functions that return boolean values.

For example, the GTS(arr1, arr2) function takes two dynamic arrays and returns a

2.12-4

226 Teach Yourself OpenQM

new dynamic array of true / false values indicating whether the corresponding
elements of arrl are greater than those of arr2.

Thus, if A contains 11rmOvm17vMPQRrM2
and B contains 12rm0vm1 4vmABCru2

C = GTS(A, B)

returns C as OrmOvm1vm1rmO

The multi-valued logical functions are

ANDS() Multi-valued logical AND

EQS(Multi-valued equality test

GES(Multi-valued greater than or equal to test
GTS(Multi-valued greater than test

LES() Multi-valued less than test

LTS(Multi-valued less than or equal to test
NES() Multi-valued inequality test

NOTS() Multi-valued logical NOT

ORS() Multi-valued logical OR

The IFS() function returns a dynamic array constructed from elements chosen from
two other dynamic arrays depending on the content of a third dynamic array.

IFS(control .array, true.array, false.array)

where
control.array 1s a dynamic array of true / false values.
true.array holds values to be returned where the corresponding element of
control.array is true.
false.array holds values to be returned where the corresponding element of

control.array 1s false.

The IFS() function examines successive elements of control.array and constructs a
result array where elements are selected from the corresponding elements of either
true.array or false.array depending on the control.array value.

Example

A contains 1vmOvmOvmlymlvmlvmO

B contains 6vm2vm3vm4vm9vm6vm3

C contains 2vm8vmbvmOvm3vm1lvm3
D = IFS(A, B, ©)

returns D as 6vm8vmbvm4vm9vmOvm3

2.12-4

Introduction to QMBasic Programming 227

The LOCATE Statement

The LOCATE statement searches a dynamic array for a given field, value or
subvalue.

Beware: This statement has different forms in the various multivalue products. By
default, QM follows the "Information style" model as described below. There is a
compiler option to select an alternative form of this statement discussed later.

LOCATE string IN array<field {, value {,subvalue}} {BY seq}
{SETTING var}

{THEN statement(s)}

{ELSE statement(s)}

where

string evaluates to the item to be located.

array is the dynamic array in which searching is to occur.

field 1s the field at which the search is to commence.

value 1s the value at which the search is to commence. If omitted or zero,
the entire array is search for a field equal to string.

subvalue 1s the subvalue at which the search is to commence. If omitted or
zero, the specified field of array is search for a value equal to string.

seq evaluates to the sequence string as described below. If omitted, no
ordering is assumed.

var is the variable to receive the position value. In QM, the SETTING

clause is optional.

statement(s) are statements to be executed depending on the outcome of the
LOCATE action.

At least one of the THEN or ELSE clauses must be present.

The LOCATE statement searches for fields, values or subvalues depending on the
position specified by field, value and subvalue. If value is not present, a search is
performed for a field that matches string. If value is present but subvalue is absent or
zero, a search is performed for a value within the specified field that matches string.
If value and subvalue are both present, a search is performed for a subvalue within
the specified field and value that matches string.

Note that the syntax actually reads incorrectly. A LOCATE statement such as
LOCATE DT IN DATES<1> SETTING POS THEN ...

1s not searching in DATES<1> at all. It is searching starting at DATES<1>.

Searching commences at the position defined by field, value and subvalue.

2.12-4

228

Teach Yourself OpenQM

o When value and subvalue are omitted or zero, the LOCATE looks for a field
equal to string.

o When value is non-zero and subvalue is omitted or zero, the LOCATE looks for

a value equal to string within the specified field. Searching does not continue
beyond the end of the field.

e When value and subvalue are non-zero, the LOCATE looks for a subvalue equal
to string within the specified value. Searching does not continue beyond the end
of the value.

If a match is found, var is set to the field, value or subvalue position as appropriate to
the level of the search. If no match is found, var is set to the position at which a new
item should be inserted. For an unsequenced LOCATE this will be such that it would
be appended to the end of any exiting items.

The optional BY clause allows selection of an ordering rule. The order must evaluate
to a two character string, which is

AL Ascending, left justified. Items are considered to be sequenced in
ascending collating sequence order.

AR Ascending, right justified. Items are considered to be sequenced in
ascending collating sequence order. Where the item being examined is not
of the same length as the string being located, the shorter of the two is
right aligned within the length of the longer prior to comparison. Numeric
items are compared as numbers, including negative values.

DL Descending, left justified. Similar to AL except that the list is held in
descending collating sequence.

DR Descending, right justified. Similar to AR except that the list is held in
descending collating sequence.

Left aligned ordering is normally used for textual data. Right aligned ordering is
useful for numeric data such as internal format dates where the left aligned ordering
would lead to sequencing problems (for example, 17 May 1995 is day 9999, 18 May
1995 is day 10000. Use of a left aligned ordering would place these dates out of
calendar order).

The THEN clause is executed if the string is found in array. The ELSE clause is
found if the string is not found.

The result of a LOCATE statement with a specific ordering when applied to a
dynamic array which does not conform to that ordering is undefined and likely to
lead to misbehaviour of the program at run time.

Examples

Consider a college student registration database where the fields are:
1 Name
2 Multi-valued list of course codes for which the student has registered
3 Corresponding multi-valued list of grades scored for each course
4 Multi-subvalued lists of test paper scores for each course

2.12-4

Introduction to QMBasic Programming 229

A student might have the following dynamic array of course codes and results:
Smith, JrnuM101vmM 14 3rMAvmBrv9 7sm95vm8 7smu88

The LOCATE statement could be used to search the list of course codes:

LOCATE *"M143" IN VAR<2,1> SETTING POS
THEN DISPLAY "Found at value " : POS
ELSE DISPLAY "Not found*®

The above would find M143 as the second value in the specified field and set POS to
2. The THEN clause would be executed.

LOCATE *M122° IN VAR<2,1> SETTING POS
THEN DISPLAY "Found at value " : POS
ELSE DISPLAY "Not found*®

The above would not find M122 in the specified field. POS would be set to 3 as the
position at which the item could be appended to the list. The ELSE clause would be
executed.

The list of course codes in field 2 appears to be sorted. Use of the BY clause would
change the behaviour of the previous example.

LOCATE *M122" IN VAR<2,1> BY "AL" SETTING POS
THEN DISPLAY "Found at value " : POS
ELSE DISPLAY "Not found*®

The above would not find M122 in the specified field. POS would be set to 2 as the
position at which the item should be inserted to maintain the correct sorted order of
the list. The ELSE clause would be executed.

Alternative Forms

The LOCATE statement is implemented differently in the various multivalue
database products. This can lead to confusion when you first start writing programs.
Find out what variant is used by your business software and stay with just that one
form.

The UniVerse database running in Ideal, Pick, Reality or IN2 flavour uses the IN
clause to identify the item to be searched, not the starting position. The starting
position is assumed to be the first item in the data but may specified explicitly in the
command.

LOCATE string IN array{<field {,value }>} {, start} {BY seq}
{SETTING var}

{THEN statement(s)}

{ELSE statement(s)}

2.12-4

230 Teach Yourself OpenQM

This format of LOCATE can be selected by including a line
$MODE UV.LOCATE

in the program on a line preceding the LOCATE statement (usually at the top of the
program).

The Pick database uses a very different syntax.

LOCATE(string, array{,field {,value }}; var {; seq})
{THEN statement(s)}
{ELSE statement(s)}

This format can be used in QM without any special mode settings. Note that despite
the presence of brackets, this is a statement and should not be confused with the
LOCATE() function described below.

QMBasic also supports a function version of LOCATE which can be useful in
dictionary I-types:
var = LOCATE(string, array, field {,value {, subvalue }} {; seq})

The LOCATE() function returns as its result the position at which the item was
found, or zero if it was not found. Although the seq argument can be used to specify
the expected ordering and has the impact described above for numeric data, this
function does not provide a way to identify where an item should be inserted if it is
not found.

2.12-4

Introduction to QMBasic Programming 231

Inserting Items - The INS Statement

We often want to insert items into an existing dynamic array. The INS statement
allows us to do this very easily. The INSERT() function performs the same task but
returns a new dynamic array, leaving the original dynamic array unchanged.

INS string BEFORE array<field {, value {, subvalue}}>
INSERT(array, field {, value {, subvalue}} , string)

where
string is the string to be inserted.
array is the dynamic array into which the item is to be inserted.
field 1s the number of the field before which insertion is to occur.
value is the number of the value before which insertion is to occur. If omitted

or zero, value 1 is assumed.

subvalue 1is the number of the subvalue before which insertion is to occur. If
omitted or zero, subvalue 1 is assumed.

The string is inserted before the specified field, value or subvalue of the dynamic
array. The INS statement assigns the result to the array variable, overwriting the
original data. The INSERT() function returns the result without modifying array.

Example
Consider the same dynamic array as in earlier examples.
Smith, JrnuM101vmM 14 3rMAvmBryM9 7sm95vm8 7sm88

A program to add a new course to the list might contain statements of the form:

INPUT COURSE
LOCATE COURSE IN VAR<2,1> BY "AL" SETTING POS THEN
DISPLAY "Student is already registered for this course-
END ELSE
INS COURSE BEFORE VAR<2,P0S>
INS " BEFORE VAR<3,P0S>
INS " BEFORE VAR<4,P0S>
END

Adding course M 120 would result in
Smith, JrM101vmM 120vMM 14 3rvAvavmBryn9 7sm9 5vavm8 7smu88

Note that it is the programmer's responsibility to maintain the relationship between
associated fields. The null strings inserted into fields 3 and 4 create a space for the
results of the new course to appear later. For a simple association with only two or
three fields, this would usually be done as in our example. Program maintenance
may be simplified with a more complex data structure that has many associated

2.12-4

232

Teach Yourself OpenQM

fields by having a subroutine that inserts a row into the association. This subroutine
encapsulates maintenance of the association and can be called from any place in the
application that needs to add an entry.

Deleting Items - The DEL Statement

The DEL statement deletes a field, value or subvalue from a dynamic array. The
DELETE() function performs the same task but returns a new dynamic array,
leaving the original dynamic array unchanged.

DEL array<field {, value {, subvalue}}>
DELETE(.array, field {, value {, subvalue}})

where
array is the dynamic array from which the item is to be deleted.
field evaluates to the number of the field to be deleted.
value evaluates to the number of the value to be deleted. If omitted or zero,

the entire field is deleted.

subvalue evaluates to the number of the subvalue to be deleted. If omitted or
zero, the entire value 1s deleted.

The specified field, value or subvalue of the dynamic array is deleted. The DEL
statement assigns the result to the array variable, overwriting the original data. The
DELETE() function returns the result without modifying array.

Example
Again, consider our student registration record
Smith, JrnuM101vmM 14 3rMAvmBryM9 7sm95vm8 7smu88

A program to delete a course from the list might contain statements of the form:

INPUT COURSE
LOCATE COURSE IN VAR<2,1> BY "AL" SETTING POS THEN
DEL VAR<2,P0S>
DEL VAR<3,P0S>
DEL VAR<4,P0S>
END ELSE
DISPLAY "Student is not registered for this course®
END

Using this program to delete course M143 would result in

2.12-4

Introduction to QMBasic Programming 233

Smith, JrnM101rMArM9 7sm95

Again, note that it is the programmer's responsibility to maintain the relationship
between associated fields.

Replacing Fields, Values and Subvalues

The programs that you have written so far have already included statements to
replace the value in a given field of a dynamic array. Equivalent statements allow us
to replace values or subvalues.

var<field> = new.value
var<field, value> = new.value
var<field, value, subvalue> = new.value

If the given field, value or subvalue does not already exist, mark characters are

added as necessary to create this new item.

The REPLACE() function returns a modified dynamic array, leaving the original
array unchanged.

REPLACE(array, field {, value {, subvalue}} , new.value)

where
array evaluates to a string in which the replacement is to occur.
field evaluates to the field position number. If zero, this argument
defaults to one.
value evaluates to the value position number. If omitted or zero, the
entire field is replaced.
subvalue evaluates to the subvalue position number. If omitted or zero, the

entire value is replaced.
new.value evaluates to the replacement data.
If field, value and subvalue are not all present, the comma before the new.value
argument must be replaced by a semicolon.
Examples
Perhaps, the grade recorded in our student registration database is incorrect.
Smith, JrmM101vmM 14 3rmAvMBrM9 7sM95vm8 7sm88

A program to modify the grade might contain statements of the form:

2.12-4

234 Teach Yourself OpenQM

INPUT COURSE
LOCATE COURSE IN VAR<2,1> BY "AL" SETTING POS THEN
INPUT GRADE
VAR<3,P0S> = GRADE
END ELSE
DISPLAY "Student is not registered for this course®
END

Consider a dynamic array named X containing
ArvB1vwB2rnC

The following two statements
X<5> = "E*
X<2,5> = "B5"

would result in the dynamic array containing
ArvB1vmB2vmvmvB5rmCrvrv E

Before this update, field 4 was implicitly empty. After the update it is explicitly
empty. The modification has not changed field 4 in any way. The significance of this
1s that it does not matter in what order an application populates a dynamic array.
The mark characters will be correctly maintained automatically.

Appending to Lists of Unknown Length

There is an easy way to append a new field to the end of a dynamic array, a value to
the end of a field, or a subvalue to the end of a value without needing to know how
many items are already present. This makes use of a special syntax where the field,
value or subvalue number is given as -1.

var<-1> = new.value
var<field, -1> = new.value
var<field, value, -1> = new.value

Example

Once more, consider our student record
Smith, JrnM101vmM 14 3rMAvmBryv9 7sm95vm8 7smu88
The statement
VAR<2,-1> = "M152"
would amend the dynamic array to become
Smith, JrnM101vmM143vmM 152rmAvMBrm9 7sM95vm8 7sm88

2.12-4

Introduction to QMBasic Programming 235

The LISTINDEX() Function

The LISTINDEX() function is broadly similar to LOCATE() but searches for an item
in a list delimited by any single character.

LISTINDEX(list, delimiter, item)
where
list is the list to search
delimiter 1is the single character delimiter that separates items in /[ist
item is the item to find

The LISTINDEX() function returns the position of item in the delimited list. If it is
not found, the function returns zero.

The DCOUNT() Function

We often want to know how many items there are in a list. The DCOUNT() function
counts items separated by some delimiter character.

DCOUNT(list, delim)

where
list is the delimited character string in which the count is to be performed.
delim evaluates to the single character delimiter between each item in [ist.
Examples

For our student registration record
Smith, JrM101vmM 14 3rMAvmBrv9 7sm95vm8 7smu88

the statement
NUM.COURSES = DCOUNT(VAR<2>, @VM)

could be used to count the values in field 2.

If the student has taken only one course, there is no value mark present
Smith, JrM101rmArM9 7sm95

The statement
NUM.COURSES = DCOUNT(VAR<2>, @VM)

will still work correctly, returning the value 1.

2.12-4

236

Teach Yourself OpenQM

If the student has registered, but not yet taken any courses, the field holding the list

of courses will be empty or may not even exist
Smith, J

In this case, the statement
NUM.COURSES = DCOUNT(VAR<2>, @VM)

would return zero. DCOUNT() returns one more than the number of delimiters
unless the string is empty, in which case it returns zero.

2.12-4

Introduction to QMBasic Programming 237

The REMOVE Statement

The most efficient way to process every element of a dynamic array in turn is by use
of the REMOVE statement.

REMOVE 1tem FROM var SETTING delim

where
item is the variable to receive the extracted data.
var is the dynamic array from which data is to be extracted.
delim is a variable to receive a code indicating the delimiter character the

terminated data extraction.

Whenever a character string value is stored in a variable, an associated remove
pointer, is set to zero. The REMOVE statement extracts characters from the string
in var starting at the character offset one greater than the remove pointer value.
Because there is no searching involved, this operation is very fast.

Each character extracted is copied into item.

Extraction terminates when a mark character is found. The mark character is not
stored in item. The remove pointer is set to the offset of this mark within the string.

If the end of the string is reached, the remove pointer is set to one more than the
length of the string. A further REMOVE would return a null item, leaving the
remove pointer unchanged.

The delim variable is set according to the mark character:
End of string reached

Item mark

Field mark

Value mark

Subvalue mark

Text mark

Qi WO DN RO

The REMOVE() function performs the same task but returns the extracted data as
its result.

REMOVE(var, delim)

The remove pointer can be repositioned using the SETREM statement:
SETREM pos ON var

where

pos 1s the value to be set in the remove pointer

2.12-4

238

Teach Yourself OpenQM

var 1s the variable to which this applies

Although setting the remove pointer to zero is the best way to position it at the start
of the string, SETREM is not found in all multivalue products. Developers often use
a strange statement of the form

var = var

to rewind the remove pointer. This works because assigning a value to a string resets
the pointer, even if the value assigned is the current content of the variable.

Examples

The REMOVE statement or corresponding function is frequently used to process a
list of items stored in a field of a database file.

Consider our SALES file. This includes a field holding the products purchased by the
customer. We could process this in a loop such as

PARTS = SAL.REC<SL.ITEM>
IF PARTS # "" THEN
LOOP
DISPLAY REMOVE(PARTS, MORE)
WHILE MORE
REPEAT
END

Note that, although probably irrelevant in this example, we have included a check
that the product list is not empty before we enter the loop. This is because we would
otherwise perform one cycle of the loop, displaying a blank line.

We can also use REMOVE to break a long text string across multiple lines. The text
mode justification of the FMT() function can be used to insert text mark characters
such that no portion of the string exceeds some given length. The REMOVE
statement or function could then be used to extract these sections in turn.

DESC = FMT(STK.REC<ST.DESCR>, "25T"%)
LOOP
DISPLAY REMOVE(DESC, MORE)
WHILE MORE
REPEAT

2.12-4

Introduction to QMBasic Programming 239

The REMOVEF() Function

QMBasic provides a more generalised string function that extracts items using the
optimisation provided by the remove pointer.

REMOVEF(string {, delim {, count}})

where
string is the string from which data is to be extracted.
delim is the delimiter character that separates elements of string. If omitted,
a field mark is used. If delimiter is more than one character, only the
first character is used. If delim is a null string, count characters are
extracted.
count is the number of consecutive delimited elements of string to be

extracted. If omitted or less than one, this defaults to one.

The REMOVEF() function uses the same optimised method as the REMOVE()
function to extract items from string sequentially but uses a specified delimiter
character instead of terminating on any mark character.

Whenever a string is assigned to a variable the remove pointer is set to point one
character before the start of the string. Subsequent uses of REMOVEF() advance the
point by one character and then extract characters from the position of the remove
pointer up to the next delimiter character or the end of the string. Because the
remove pointer gives immediate access to the position at which the REMOVEF()
should commence, this operation requires no searching and is therefore very fast.

Once the end of the string has been reached, the remove pointer remains positioned
one character beyond the end of the string and further REMOVEF() operations
would return a null string.

The REMOVEF() function uses the STATUS() function to return information about
its outcome:

0 Successful

1 Null string

2 End of string

The remove pointer may be repositioned as described above for the REMOVE
statement.

Example

LOOP

REF = REMOVEF(REF.LIST, *,")
UNTIL STATUSQ

PRINT "Reference number is " : REF
REPEAT

2.12-4

240 Teach Yourself OpenQM

This program fragment prints successive elements from the comma delimited
REF.LIST variable.

Numeric Arrays

A numeric array is a dynamic array in which all of the elements contain numbers.
QMBasic provides several methods to perform operations on each value of the array
in a single statement or function.

The arithmetic operators (*, /, +, -) all work on corresponding pairs of values when
the items on either side of the operator are numeric arrays. For example,

A contains 12rv9rM6rm18
B contains 4rm3rm2rml2

C =
C =

sets C to 167128730

A+ B
A/ B sets C to 3rm3ru3rml1.5

What if there are fewer items in B than in A?

A contains 12rv9rM6rm18
B contains 4rv3rm2

C =
C =

sets C to 16rm12mi8rm18

A+ B
A/ B sets C to 3rm3rm3rm18

The addition has assumed that the "missing" element of B is zero. This is also true
for subtraction and multiplication. For division, the missing item is assumed to be 1

if it 1s the divisor to avoid a divide by zero error.

Sometimes, we want to reuse the last value in place of the missing item. The
REUSE() function allows us to do this.

A contains 12rv9rM6rm18
B contains 4rm3rm2

C = A + REUSE(B) sets C to 16rm12rm8rm20

This function is often used when its argument is a single value, perhaps even a
constant. For example, to add 17.5% tax to a list of prices, we could write

SALE.PRICE = EX.TAX.PRICE * REUSE(1.175)

The REUSE() function is frequently used in dictionary I-type items. Combined with
the multi-valued functions discussed earlier in this section, it is possible to write
some very elegant solutions to apparently complex problems.

2.12-4

Introduction to QMBasic Programming 241

Summing the Items

The SUM() function eliminates the lowest level of a numeric array by adding the
elements to form an item of the next highest level.

SUM(expr)
where

expr 1s a numeric array.

The SUM() function identifies the lowest level elements present in expr and forms the
sum of each group of elements at this level, replacing the group with an item of the
next highest level.

e In a numeric array containing subvalues, the subvalues are summed to form
values.

o If there are no subvalues and the numeric array contains values, the values are
summed to form fields.

o If there are no subvalues or values, the fields are summed to form a single field.

e If only one item remains, the SUM() function returns expr.

Example

An invoicing system might have a PAYMENTS field containing a list of payments
against the invoice. We can find the total of all payments by a statement such as

TOTAL.PAID = SUM(PAYMENTS)

Exercise

Extend the action prompt in your ORDERS program to allow entry of a part number.
Check that the part exists and, if not, display an error message.

Examine the order using LOCATE to see if this part is already included. If so, allow
the user to adjust the quantity. If a quantity of zero is entered, use DEL to remove
the part and associated quantity and price from the order. This will require redisplay
of the order detail lines. Your existing subroutine should do this though it may need
some slight modification to remove the final line from the display.

2.12-4

242

Teach Yourself OpenQM

Suggested Solution

Only the modified subroutines are shown below. Depending on the mode settings of
QM used on your system, the LOCATE statement may be written differently. The

example below is for the default "Information style" syntax.

This example also shows how the next record id in the SALES file is tracked by use
of a record named NEXT.ID in the file's dictionary and assumes that the dictionary

has been opened earlier in the program using a file variable named SAL.D.

* Paint fixed part of screen

PAINT .SCREEN:
DISPLAY @(-1) :
DISPLAY @(32,0) : "ORDER PROCESSING" :
DISPLAY @(0,3) : "Order No:"

DISPLAY @(20,3) : "Date:" :
DISPLAY @(0,5) : "Customer No:*
DISPLAY @(5,8) : "Part”

DISPLAY @(11,8) : "Description® :
DISPLAY @(48,8) : "Price” :
DISPLAY @(56,8) : "Qty" :

DISPLAY @(65,8) : "Total" :

DISPLAY @(48,14) : "Order Total:"
DISPLAY @(0,20) : "Action (F/D/X/part):"

RETURN

* Show order details

DISPLAY .ORDER.LINES:
LN =9
FOR IDX = 1 TO 5
PART.NO = SAL.REC<SL.ITEM, IDX>
IF PART_.NO = *" THEN

DISPLAY @(O,LN) : @(-4) : ;* Clear unused line

END ELSE
PRICE = SAL.REC<SL.PRICE, IDX>
QTY = SAL.REC<SL.QTY,IDX> + O
DISPLAY @(5,LN) : PART.NO

DISPLAY @(45,LN) : FMT(OCONV(PRICE, CASH.CONVERSION),

.7R-)
DISPLAY @(55,LN) : FMT(QTY, "4R%)
READ STK.REC FROM STK.F, PART.NO THEN

DISPLAY @(11,LN) : STK.REC<ST.DESCR>[1,30]

DISPLAY @(61,LN) : FMT(OCONV(PRICE * QTY,
CASH._CONVERSION), "9R")
END
END
LN += 1
NEXT IDX

2.12-4

Introduction to QMBasic Programming 243

RETURN

* Action prompt

ACTION.PROMPT :
FINISHED = @FALSE
LOOP
ACTION = ="
INPUT @(21,20) ACTION,3

BEGIN CASE
CASE ACTION = *"D* ;* Delete

* Order deletion to be added here
FINISHED = @TRUE

CASE ACTION = "F" ;* File

* IT we are creating a new order, we have left
generating

* the order number until now.

IF ORDER.NO = """ THEN
READU NEXT.ORDER FROM SAL.D, "NEXT.ID" ELSE

STOP ""Cannot find NEXT.ID record"
END

ORDER.NO = NEXT.ORDER<2>
NEXT.ORDER<2> = ORDER.NO + 1
WRITE NEXT.ORDER TO SAL.D, "NEXT.ID"

DISPLAY @(10,3) : ORDER.NO :
END

WRITE SAL.REC TO SAL.F, ORDER.NO

DISPLAY @(0,23) : "Order confirmed. Press return® :
INPUT JUNK, 1 :

FINISHED

@TRUE

CASE ACTION
IF ORDER.
FINISHED

"X" ;* EXiIt
O # "" THEN RELEASE SAL.F, ORDER.NO
@TRUE

I =1

CASE ACTION MATCHES "3N" ;* Part number?
PART.NO = ACTION

READ STK.REC FROM STK.F, PART.NO THEN

PRICE = SKT.REC<ST.PRICE> ;* May need to revise
price

LOCATE PART.NO IN SAL.REC<SL.ITEM,1> SETTING IDX

THEN ;* Modifying quantity
LN = 8 + IDX
LOOP

QTY = SAL.REC<SL.QTY, IDX>

INPUT @(55,LN) QTY,4_:
UNTIL QTY MATCHES "1-4N*

INPUTERR "Invalid quantity*®

2.12-4

244 Teach Yourself OpenQM

REPEAT

IF QTY = O THEN
DEL SAL.REC<SL.ITEM, IDX>
DEL SAL.REC<SL.QTY, IDX>
DEL SAL.REC<SL.PRICE, IDX>
GOSUB DISPLAY.ORDER.LINES
END ELSE
DISPLAY @(55,LN) : FMT(QTY, "4R") :
SAL.REC<SL.QTY, IDX> = QTY
SAL.REC<SL.PRICE, IDX> = PRICE

DISPLAY @(61,LN) : FMT(OCONV(PRICE * QTY,
CASH.CONVERSION), "9R")

END
END ELSE
INPUTERR "Part number is not in order”
END
END ELSE
INPUTERR "Part number is not known*
END
CASE 1
INPUTERR “File, Delete, eXit, part number-
END CASE
UNTIL FINISHED
REPEAT
RETURN

END

2.12-4

Introduction to QMBasic Programming 245

15.8 Matrix File Operations

Matrix Variables

A matrix variable is a one or two dimensional array of values. Matrices must be
declared by use of the DIMENSION (more usually DIM) statement in the source
program on a line which precedes any other reference. The DIM statement must also
be executed at program run time before the variable is used in any other way.

A one dimensional matrix of five elements with index values 1 to 5 is defined by a
statement of the form

DIM A(5)

A1) ‘Am) ‘Aw) ‘AH) ‘Aﬁ)

For a two dimensional matrix with 2 rows of 5 columns this becomes

DIM B(2,5)

B(1,1) B(1.2) jB(1.3) jB(1.4)]JB(15)

B2,1) B2 IB23) [B24) [B25)

By default, all matrices have an additional element, the zero element, which is used
by some statements. This is referred to as A(0) or B(0,0).

A(0) ‘AU) ‘Am) ‘Aw) ‘AH) ‘Aﬁ)

The elements of a matrix may hold data of differing types. They may be used
anywhere that a simple variable can be used

2.12-4

246

Teach Yourself OpenQM

Every element of a matrix can be set to the same value by a statement of the form
MAT A = value

The zero element is set to a null string regardless of the value assigned to the
remaining elements.

One matrix can be copied to another by a statement of the form
MAT A = MAT B

which copies all elements, including the zero element. A single dimensional matrix
can be copied to a two dimensional matrix and vice versa.

To understand the effect if the matrices are not of the same dimensionality or size,
consider the copy process as walking through the matrix left to right, row by row
until the end of either matrix is reached. If the source matrix has more elements
than the target matrix, the excess elements are ignored. If the target matrix has
more elements that the source matrix, the remaining elements are unchanged.

Matrix File Operations

The file handling operations that we have seen so far read and write data using
dynamic arrays. These are very efficient where we perform relatively little processing
of each record or where the records have relatively few fields.

If we are going to perform a significant amount of processing on data records with
many fields, the cost of searching through the dynamic array to find each field as it is
required may be such that it is better to break the record into individual fields. QM
provides a set of file handling operations to break the fields of a data record across
successive elements of a dimensioned matrix.

The MATREAD Statement

The MATREAD statement reads a database record, placing each field in a separate
element of a dimensioned array.

MATREAD mat FROM file.var, record.id
{ON ERROR statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
mat 1s the name of a dimensioned array to receive the data read
from the file.
file.var 1s the file variable associated with the file.

2.12-4

Introduction to QMBasic Programming 247

record.id evaluates to the id of the record to be read.
statement(s) are statements to be executed depending on the outcome of the
MATREAD operation.

This statement works in the same way as the READ statement except that each field
of the record is placed in a separate element of the target matrix.

There are also corresponding MATREADU and MATREADL statements that take a
lock on the record. These have an optional LOCKED clause that works in the same
way as in their dynamic array counterparts.

Example

DIM STK.REC(10)

MATREAD STK.REC FROM STK.F, PART.NO THEN
DISPLAY PART.NO
DISPLAY "Description = " : STK.REC(ST.DESCR)
DISPLAY ~Stock level = * - STK_REC(ST.QTY)
END ELSE
DISPLAY "Record ® : PART.NO: " not found-
END

In this example we have created a dimensioned array named STK.REC to hold a
STOCK file record and we use MATREAD in place of READ to read the record. The
number of elements in the STK.REC matrix is greater than the number of fields in a
stock record. The unused fields will be set to a null string.

If there are more fields in the data record than there are elements in the
dimensioned array, the excess fields are stored in the zero element together with any
intervening field marks.

All references to fields in the record within the application now become indexed
references to matrix elements. With so little processing of the record, the cost of
breaking the record apart during the MATREAD would be greater than the
performance gained by removing the need for dynamic array field searches. In a
more realistic program with much larger record structures, there may be significant
advantage in this technique.

The EQUATE statement allows us to give names to elements of a dimensioned array.
We could modify the above example to become

DIM STK.REC(10)
EQUATE STK.DESCR TO STK.REC(1)

EQUATE STK.QTY TO STK.REC(2)
EQUATE STK.PRICE TO STK.REC(3)
--.etc...

MATREAD STK.REC FROM STK.F, PART.NO THEN

2.12-4

248

Teach Yourself OpenQM

DISPLAY PART.NO
DISPLAY "Description " 1 STK.DESCR

DISPLAY "Stock level " I STK.QTY
END ELSE

DISPLAY "Record * : PART.NO: * not found-
END

By placing the EQUATE token definitions in an include record, they can be imported
into all programs that need them.

The MATWRITE Statement

The MATWRITE statement builds a record from successive elements of a
dimensioned array and writes it to a file.

MATWRITE mat TO file.var, record.id
{ON ERROR statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
mat is the name of the matrix containing the data to be written.
file.var 1s the file variable associated with the file.
record.id evaluates to the id of the record to be written.
statement(s) are statements to be executed depending on the outcome of the

MATWRITE.

MATWRITE constructs a dynamic array by concatenating the elements of mat,
inserting a field mark between each element.

If the zero element of mat is a null string or unassigned, assembly of the dynamic
array terminates after the last non-null element of mat. No trailing null fields will be
written for later unassigned elements of mat.

If the zero element of mat contains data, all elements of mat are used and the zero
element is concatenated as the final field(s) of the record.

The ON ERROR, THEN and ELSE clauses work as in the WRITE statement.

There is also a corresponding MATWRITEU statement which retains the lock after
writing the record.

The way in which MATREAD and MATWRITE use the zero element means that it
acts as an "overflow bucket" for fields in the record that the program did not expect
to be present. If new fields are added to an existing record structure, only the
programs that access those fields need modifying. Other programs will correctly

2.12-4

Introduction to QMBasic Programming 249

maintain the values of the unexpected fields by use of the zero element as temporary
storage.

Pick systems do not have a zero element in a dimensioned matrix. Instead, any
unexpected data is stored in the final element of the matrix. For this reason, Pick
programmers typically declare the matrix to be at least one element larger than the
record size, effectively moving the zero element to the end of the matrix.

Because of an interaction with common blocks (discussed later), QM supports Pick
style matrices with no zero element. These are enabled using the PICK.MATRIX
setting of the SMODE compiler directive. See the QM Reference Manual for more
details.

The language includes two statements, MATPARSE and MATBUILD, which can be
used to break a dynamic array across a dimensioned matrix or to build a dynamic
array from a dimensioned matrix. These statements are not discussed further here.

2.12-4

250

Teach Yourself OpenQM

15.9

Select Lists

A select list is a list of items, usually record ids, to be processed. As we saw earlier,
the query processor can be used to construct select lists based on detailed selection
criteria. In this section, we will look at the QMBasic SELECT statement that builds
a list of all of the records in a file.

Every QMBasic program has access to the eleven numbered select lists (0 to 10) used
by the query processor. The QMBasic statements that we meet in this section will
use list 0, the default select list, unless we include clauses to direct use of an
alternative list.

The QMBasic SELECT statement creates a list of all of the records in an open file for

subsequent processing. Record ids are extracted from the list one by one using the
READNEXT statement.

The syntax of SELECT is

SELECT file.var {TO list.no} {ON ERROR statement(s)}

where
file.var is the file variable associated with an open file.
list.no 1s the select list number of the list to be created. If omitted,
select list zero is used.
statement(s) are statement(s) to be executed if a fatal error occurs.

A list of record keys in the file open as file.var is created and stored as an active
select list list.no replacing any previously active list.

Although this may sound inefficient as it seems to require us to read the entire file as
part of the SELECT statement, QM uses an optimised method such that each group
is examined only when the record keys are extracted from the select list by a
subsequent READNEXT or other list processing statement. The SELECT statement
actually does no more than set a pointer to the start of the file. It is READNEXT that
actually does the work. This reduces disk transfers and gives better application
performance than constructing the entire list and then processing the records.

The syntax of READNEXT is

READNEXT var {FROM list_no}
{ON ERROR statement(s)}
{THEN statement(s)}

{ELSE statement(s)}

2.12-4

Introduction to QMBasic Programming 251

where
var is the variable to receive the select list item.
list.no 1s the select list number. If omitted, select list zero is used.
statement(s) are statement(s) to be executed depending on the outcome of the

READNEXT operation.

At least one of the THEN or ELSE clauses must be present.

The next item in the specified select list is removed from the list and stored in var.
The THEN clause is executed if the select list was active and not empty.

The ELSE clause is executed if the select list was not active or no items remained to
be read. The var variable will be set to a null string.

Example

OPEN "CUSTOMERS®" TO CUS.F
ELSE ABORT "Cannot open CUSTOMERS file*
SELECT CUS.F
LOOP
READNEXT CUS.ID ELSE EXIT
READ CUS.REC FROM CUS.F, CUS.ID THEN
DISPLAY CUS.ID - * * : CUS.REC<CS.NAME>
END
REPEAT

The above example displays a list of record ids and customer names from the
CUSTOMERS file. Note the use of EXIT. We could not have used UNTIL here
without introducing a flag variable to handle the end of the list.

2.12-4

252

Teach Yourself OpenQM

The CLEARSELECT Statement

Perhaps we have a program that must find a record that meets some condition but
only needs to find one such record. For example, we might want to find any order
that was place by a specific customer. We could do this with a loop such as

OPEN "SALES®" TO SAL.F ELSE ABORT "Cannot open SALES file"
SELECT SAL.F
LOOP
READNEXT SAL.ID ELSE EXIT
READ SAL.REC FROM SAL.F, SAL.ID THEN
IF SAL.REC<SL.CUST> = CUST.NO THEN
S processing of this record...
EXIT
END
END
REPEAT
... further processing...

This loop would leave a partially processed list in the default select list. Later
processing in the program might not work correctly because of the way in which this
list is used automatically by many parts of QM. We must, therefore, discard any
remaining items in the list using the CLEARSELECT statement.

CLEARSELECT { list.no }
CLEARSELECT ALL

The first form clears the specified select list. If list.no is omitted, the default list is
cleared. The second form clears all select lists.

Transferring Select Lists To/From Dynamic Arrays

Two statements are provided to create a select list from a dynamic array or vice
versa.

FORMLIST dyn.array { TO list.no }
READLIST dyn.array { FROM list.no }

THEN statement(s)
ELSE statement(s)

The dynamic array version of the list is delimited by field marks.

2.12-4

Introduction to QMBasic Programming 253

Exercise

Modify the subroutine that handles entry of customer numbers in your ORDERS
program to display a list of customers if the user enters a question mark.

Initially assume that the entire list will fit on a single screen. You will need to clear
the screen before displaying the list. After the list has been displayed, wait for the
user to press the return key, repaint the screen and prompt for the customer number
again.

Once this is working, consider how you would need to modify the program to allow
for a customer list that spanned many pages.

2.12-4

254 Teach Yourself OpenQM

Suggested Solution

* Get customer number

GET.CUST.NO:
CUST.NO = "*
LOOP
INPUT @(13,5) : CUST.NO, 4 :
IF CUST.NO = "?" THEN
DISPLAY @(-1) :
SELECT CUS.F
LOOP
READNEXT CUST.NO ELSE EXIT
READ CUS_REC FROM CUS.F, CUST.NO THEN
DISPLAY CUST.NO : " " : CUS.REC<CS.NAME>
END
REPEAT
INPUT JUNK,1 :
GOSUB PAINT.SCREEN
GOSUB PAINT.DATA

END ELSE
READ CUS.REC FROM CUS.F, CUST.NO THEN EXIT
INPUTERR ""Customer '™ : CUST.NO : "™ i1s not known"
END
REPEAT

SAL.REC<SL.CUST> = CUST.NO
RETURN

2.12-4

Introduction to QMBasic Programming 255

15.10 External Subroutines

External subroutines are totally separate program modules. They are entered using
the CALL statement. The RETURN statement is again used to return to the caller.

A real application will typically have hundreds or perhaps thousands of modules
called in this way. Unlike most programming languages, the modules that make up a
QMBasic application are not linked together during development to make a single
executable file. Instead, this linking takes place dynamically at run time. When the
application first attempts to call a subroutine, the system looks for it in the
catalogue, loads it into memory and continues. This mechanism results in QM
processes only loading the parts of the application that they need, often giving a
substantial reduction in memory requirements.

An external subroutine has its own local variables which are totally separate from
those of the caller. The application designer, therefore, does not have to check for
uses of the same names in other modules.

The CALL Statement

There are two styles of call available. A direct call refers directly to the name of the
subroutine to be called:

CALL MYSUB

An indirect call refers to a variable which holds the name of the subroutine:

VAR = "MYSUB*
CALL @VAR

Indirect calls allow programs to derive the name of the subroutine to be called from
lookup tables, etc. In a real program, the indirection variable would normally be set
as a result of some data extraction or calculation, not as a simple literal name. The

variable holding the subroutine name should only be reassigned when the name of

the subroutine changes.

External subroutines may call further external subroutines to any depth (subject to
available memory) and may also include internal subroutines.

Argument Passing

Given that an external subroutine has its own local variables and has no automatic
way to access the variables of the calling program, we need some way to pass
information in and out of the subroutine. This is achieved by passing arguments.

The CALL statement is extended to add a list of variables or expressions to be
passed into the subroutine.

2.12-4

256

Teach Yourself OpenQM

CALL MYSUB(A, B+6, 99)

Subroutines called with arguments must commence with a SUBROUTINE
statement in place of the (optional) PROGRAM statement. The SUBROUTINE
statement includes a list of names to be used within the subroutine to refer to the
items in the CALL.

SUBROUTINE MYSUB(P, Q, R)

There must be the same number of arguments in the SUBROUTINE statement as in
the CALL. There is a limit of 255 arguments in a call.

In this example, the variable that the subroutine references as P would be the
variable named A in the calling program, Q would be the result of adding 6 to B and
R would be the constant 99.

The argument passing mechanism of QMBasic is what is known technically as a pass
by reference. The subroutine's P variable is not a copy of the caller's A but is a
reference to it. Therefore, if the subroutine changes the value of P, the change will be
visible in A on return to the calling program.

The second and third arguments pass across the result of evaluating an expression
and a constant. These are passed by value. Any changes that the subroutine makes
to its variables Q and R have no effect on the calling program's data. Only simple
variables are passed by reference.

A CALL statement may force an argument to be passed by value by enclosing it in
parentheses, effectively making it into an expression:
CALL MYSUB((A), B+6, 99)

QMBasic extends the language definition found in other multivalue systems to allow
the SUBROUTINE statement to show that an argument is to be passed by value.
This is done by enclosing the argument variable name in parenthesis:

SUBROUTINE MYSUB((P), Q, R)

A PROGRAM is simply a SUBROUTINE with no arguments. It is therefore possible
to CALL a program. It is not possible to RUN a subroutine that requires arguments
from the command prompt.

The argument list may also pass across a whole dimensioned matrix by prefixing the
argument name in the CALL with MAT. The subroutine's argument list must also
include the MAT prefix on the relevant argument. Because the compiler needs to
know whether this is a one or two dimensional matrix, there must be a DIM
statement in the subroutine, though the actual values for the dimensions are ignored
and are frequently given as 1 to emphasise that they are meaningless.

Calling program: Subroutine:
DIM A(100,5) SUBROUTINE MYSUB(MAT X)
CALL MYSUB(MAT A) DIM X(1,1)

Alternatively, QMBasic allows the dimensionality of the matrix to be included in the

2.12-4

Introduction to QMBasic Programming 257

SUBROUTINE statement
SUBROUTINE MYSUB(X(1,1))

Again, the actual values of the dimensions are ignored.

Common Variables

We can define blocks of variables that are to be shared between programs by use of
the COMMON statement.

COMMON varl, varl, var3...

Every program that includes the same COMMON statement will access the same
variables varl, var2, var3, etc. Data stored in these variables in one program can be
seen by the other programs. Note that the common data is only shared between
programs in the same process, not between separate QM sessions.

The variable names are written as a comma separate list that may span multiple
lines. Alternatively, the example above could be written as

COMMON varl

COMMON var2

COMMON var3

...etc...

The COMMON statement should be identical in all programs using the variables.
With large common blocks and realistic names it is very easy to write
COMMON A, B, C, D

in one program and
COMMON A, C, B, D

in another. The names are only meaningful within the program module. The
underlying QMBasic processing simply treats this as a common block with four

variables. Now what the first program stores in B will be seen by the second program
in C.

One way to ensure that this does not happen is to place the COMMON statement in
an include record that is then referenced by every program that needs access to these
variables. Any change to the common block requires only that the include record is
edited and all programs using it are recompiled.

The common block defined using a COMMON statement of the form above is known
as the unnamed common. It is created when first referenced by a program and is
deleted on return to the command prompt. There are also named common blocks,
defined by a statement of the form

COMMON /name/ varl, var2, var3...

Named common blocks are created when first referenced by a program and remain in
existence until the user leaves QM. A typical application will have several named
common blocks, each containing variables related to some aspect of the application
(file handling, user interface, etc). By including each common block only in the

2.12-4

258

Teach Yourself OpenQM

programs that need it, maintenance becomes easier.

Variables in common blocks are initially zero. We can make use of this to detect
whether the data in a common block has been set up. For example, common blocks
are frequently used to store file variables so that the files need only be opened once.

COMMON /FILEVARS/ SAL.F, ;* SALES
STK.F, ;> STOCK
CUS.F, ;* CUSTOMERS
FILES.OPEN

The name of the common block should be chosen to avoid possible clashes with other
application software used from the same account. The name used in the example
above might well conflict between applications.

The include record may have any name that the application designer wishes to use.
It is useful to base it on the name of the common block that it defines. The name
often has a suffix of .H to indicate that it is a header file (a convention that has found
its way into QMBasic from the C programming language).

A named common block cannot be redefined with a different size once it has been
created. If you modify the structure of a common block you must recompile all
programs that use it. Because the block normally persists until you leave QM, you
must either quit from QM or use the DELETE.COMMON command to discard any
existing memory copy of the block.

We could write a subroutine to open the files as below.

SUBROUTINE OPEN.FILES
$INCLUDE FILEVARS.H

IF NOT(FILES.OPEN) THEN
OPEN "SALES®" TO SAL.F
ELSE ABORT "Cannot open SALES*
OPEN "STOCK®" TO STK.F
ELSE ABORT "Cannot open STOCK®
OPEN "CUSTOMERS®™ TO CUS.F
ELSE ABORT "Cannot open CUSTOMERS*®
FILES.OPEN = @TRUE
END
RETURN
END

Each program module that uses any of these files would contain a $INCLUDE line
referencing the common block definition:

$INCLUDE FILEVARS.H

Each program module that might need to open the files (because it is an entry point
to the application) would also contain a call to the OPEN.FILES subroutine:

2.12-4

Introduction to QMBasic Programming 259

$INCLUDE FILEVARS.H
CALL OPEN.FILES

There would be some minor performance benefit in writing the above as
IF NOT(FILES.OPEN) THEN CALL OPEN.FILES

to save unnecessary calls to the OPEN.FILES subroutine, however, this breaks one
of the rules of structured program design by including knowledge of the subroutine's
operation in the calling programs.

Cataloguing Programs
An external subroutine must be placed into the system catalogue before it can be
called from other programs. This is done using the CATALOGUE command. The

American spelling (CATALOG) is supported for compatibility with other multivalue
products.

CATALOGUE file_.name call.name { record.id } { options }
where

file.name 1s the name of the program file. The .OUT suffix is added

automatically.
call.name is the name to be given to the subroutine in the catalogue.
record.id 1s the name of the record in file.name. If omitted, the call.name is
used.
options are options controlling the way in which the program is catalogued.

Cataloguing operates in three modes:

Local Cataloguing
A V-type (verb) VOC entry is set up to point to the compiled program in the named
file. If the program is recompiled it is not necessary to repeat the CATALOGUE

command as the pointer will already be in place.

Local mode cataloguing is selected by use of the LOCAL option.
CATALOGUE BP MYSUB LOCAL

Private Cataloguing

The compiled program is copied to the cat subdirectory under the account. No VOC
entry is created for this mode of cataloguing. If the program is recompiled, the

2.12-4

260

Teach Yourself OpenQM

CATALOGUE command must be repeated to copy the new version of the program.

Private mode cataloguing is the default and requires no option keyword.
CATALOGUE BP MYSUB

It is possible to share private catalogues between multiple accounts. See the QM
Reference Manual for details.

Global Cataloguing

The compiled program is copied to the gcat subdirectory under the QMSYS account.
There is no VOC entry for a program catalogued in this way. If the program is
recompiled, the CATALOGUE command must be repeated to copy the new version of
the program. Globally catalogued subroutines can be called from all accounts.

Global mode cataloguing is selected by use of the GLOBAL option.
CATALOGUE BP MYSUB GLOBAL

For compatibility with some other multivalue products, global mode cataloguing can
also be selected by adding an asterisk prefix to the call.name.

The options also include

NO.QUERY Suppresses the normal confirmation prompt when cataloguing a
program globally that is already in the catalogue.

NOXREF Removes the cross-reference tables from the compiled program
when placing it in the catalogue. This reduces the memory space
required to run the program but prevents QM displaying details of
the program line number and variable names if a program error
occurs.

Automatic Cataloguing

QMBasic includes a compiler directive
$CATALOGUE {name} {LOCAL | GLOBAL}

to catalogue a program automatically after successful compilation.

2.12-4

Introduction to QMBasic Programming 261

Exercise

Create an include record to define a common block for all the file variables used by
your program.

Write a file opening subroutine similar to the one in this module.

Modify your ORDERS program to use the include record and to call the subroutine
instead of opening the files itself.

2.12-4

262 Teach Yourself OpenQM

15.11 External Command Execution

Any QM command that can be executed from the command prompt can also be
executed directly from within a program by use of the EXECUTE statement.

EXECUTE command

The EXECUTE statement is used most often for executing query processor
commands to build lists of records meeting specific criteria.

In an earlier section, we met an example using the QMBasic SELECT statement to
print the customer name from all of the records in our CUSTOMERS file.

OPEN "CUSTOMERS®" TO CUS.F ELSE ABORT "Cannot open CUSTOMERS®
SELECT CUS.F
LOOP

READNEXT CUS.ID ELSE EXIT

READ CUS.REC FROM CUS.F, CUS.ID THEN

DISPLAY CUS.ID - * * : CUS.REC<CS.NAME>

END

REPEAT

Perhaps, we only want to see the customers for whom we have a telephone number.
We could do this by adding a check for the TELNO field being non-null.

OPEN "CUSTOMERS®" TO CUS.F ELSE ABORT "Cannot open CUSTOMERS®
SELECT CUS.F
LOOP
READNEXT CUS.ID ELSE EXIT
READ CUS.REC FROM CUS.F, CUS.ID THEN
IF CUS.REC<CS.TELNO> # " THEN
DISPLAY CUS.ID - " " : CUS.REC<CS.NAME>
END
END
REPEAT

Alternatively, we could use the query processor to do the record selection for us.

OPEN "CUSTOMERS®" TO CUS.F ELSE ABORT "Cannot open CUSTOMERS®
EXECUTE "SELECT CUSTOMERS WITH TELNO
LOOP

READNEXT CUS.ID ELSE EXIT

READ CUS.REC FROM CUS.F, CUS.ID THEN

DISPLAY CUS.ID - * * : CUS.REC<CS.NAME>

END

REPEAT

This latter method becomes particularly attractive when the condition to be tested is
complex.

2.12-4

Introduction to QMBasic Programming 263

Return Codes

Most, but not all, QM commands set a status value into a system variable named
@SYSTEM.RETURN.CODE. This can be tested after an EXECUTE to determine
whether the action was successful. The values set into this variable are described in
the Q@M Reference Manual.

For user written programs, there is an equivalent status variable named
@USER.RETURN.CODE which may be used in any way the application designer
wishes. This variable is initially zero and is never changed by QM.

Both of these status variables can also be tested from QM paragraphs to control
processing of stored command sequences.

Other Features of EXECUTE
The EXECUTE statement has several other features.

The CAPTURING option allows the screen output of a command to be captured in a
dynamic array for subsequent processing. Each line of output is stored as a separate
field.

EXECUTE "LIST.READU" CAPTURING VAR

The PASSLIST option passes a Pick style select list variable into the command as
the default select list. Select list variables are described in the QM Reference Manual.

EXECUTE "RUN SALES._ANALYSIS®™ PASSLIST CLIENT.LIST

The RTNLIST option returns the default select list in a Pick style select list variable.
EXECUTE "RUN FIND.OVERDUE®" RTNLIST OVERDUE

The SETTING or RETURNING option copies the value of
@SYSTEM.RETURN.CODE to a named variable after the command has been
executed.

EXECUTE "DATE.FORMAT INFORM®™ SETTING UKDATE

The TRAPPING ABORTS option causes an abort in the executed command to return
to the program performing the EXECUTE instead of totally aborting the session.
EXECUTE "RUN MYPROG®" TRAPPING ABORTS

2.12-4

264

Teach Yourself OpenQM

Exercise

Modify the subroutine that handles entry of order details in your ORDERS program
to display a list of products if the user enters a question mark. Use the query
processor to do this by executing the sentence

LIST STOCK DESCR HDR.SUP COUNT.SUP

The two keywords at the end of this query suppress display of the page heading and
the record count.

This time, rebuilding of the screen requires more data to be displayed but your
existing subroutines should do this correctly. Depending on how your subroutines
interact, you may need to recalculate the current order line number after
redisplaying the data.

2.12-4

Introduction to QMBasic Programming

Suggested Solution

GET.ORDER.DETAILS:
FOR IDX = 1 TO 5
LN = IDX + 8

LOOP
PART.NO = **
INPUT @(5,LN) PART.NO, 3_:
UNTIL PART.NO = **
IF PART.NO = *"?" THEN
EXECUTE "LIST STOCK DESCR HDR.SUP COUNT.SUP*
INPUT JUNK,1 :
GOSUB PAINT.SCREEN
GOSUB PAINT.DATA
IDX = DCOUNT(SAL.REC<SL.ITEM>,@VM) + 1
LN = IDX + 8
END ELSE
READ STK.REC FROM STK.F, PART.NO THEN EXIT
INPUTERR "Part number is not known*
END
REPEAT
...etc...

265

2.12-4

266 Teach Yourself OpenQM

15.12 QMBasic Use of Alternate Key Indices

An alternate key index provides a means of locating records in a data file by the
value in a data field rather than by record id.

Consider our SALES file but scaled up to a realistic size with, perhaps, 100,000
orders where 10,000 customers have each placed 10 orders. If we want to find all the
orders placed by a particular customer, we would need to read all 100,000 records,
rejecting those that are for other customers. If we have an index of orders for each
customer, we can read one index record and then go directly to the SALES records of
interest. The performance improvement using such an index is likely to be very
large.

QM allows us to create indices on one or more fields defined in the dictionary. Once
created and built, these indices are maintained completely automatically and used by
the query processor completely automatically. The application requires no changes.

The commands to create and build the index are CREATE.INDEX and
BUILD.INDEX, both of which take a file name and one or more field names. These
fields may correspond to any dictionary data definition item. The MAKE.INDEX
command combines the create and build processes into a single operation. These
commands were all discussed in an earlier section.

The SELECTINDEX Statement

Although an executed query processor SELECT from a program will automatically
use any relevant index, sometimes a programmer may want to construct a select list
directly from the index entries. This can be achieved using the SELECTINDEX
statement.

SELECTINDEX index.name FROM file.var { TO list.no }

This form of the SELECTINDEX statement constructs a select list containing the
values in the named index. For an index of customers in our SALES file, it would
create a list of the customers that are referenced in the file.

SELECTINDEX index.name, value FROM file.var { TO list.no }

This form of the SELECTINDEX statement constructs a select list containing the ids
of records in the data file which have the given value for the indexed field. For an
index of customers in our SALES file, it would create a list of the orders for a specific
customer.

In either case, because of the way in which the indices are stored, the list comes back
in sorted order.

2.12-4

Introduction to QMBasic Programming 267

Example

The following program would print a list of orders and order dates for each customer.
The customers and orders would both be in numerical order. Each customer would be
separated by a blank line.

PROGRAM ORDER.LIST
$INCLUDE FILES.H

OPEN "SALES®" TO SAL.F ELSE ABORT "Cannot open SALES*

SELECTINDEX *CUST®" FROM SAL.F TO 1
LOOP
READNEXT CUS.ID FROM 1 ELSE EXIT
SELECTINDEX "CUST", CUS.ID FROM SAL.F
DISPLAY "Customer * : CUS.ID
LOOP
READNEXT ORDER.NO ELSE EXIT
READ SAL.REC FROM SAL.F, ORDER.NO THEN
DISPLAY ORDER.NO : * * :
DISPLAY OCONV(SAL.REC<SL.DATE>, "D2DMY[,A3]1")
END
REPEAT
DISPLAY
REPEAT
END

Note the use of two select lists in this program. List 1 holds the customer numbers,
the default list (list 0) holds the order numbers for the customer processed for each
cycle of the outer loop.

Scanning Indices
QM alternate key indices are implemented using balanced tree (B-tree) files which
use an internal sorted tree structure. This is slower than a hashed file for insertion

and deletion of records but has significant advantages when constructing look up
systems that require sorted data.

Programmers can use special operations within QMBasic to navigate the structure of
the index to extract items in sequence.

The starting point for a scan of the index can be set using SELECTINDEX with some

specific indexed value or with SETLEFT or SETRIGHT to position at either end of
the index.

SETLEFT iIndex.name FROM file.var
where
index.name 1s the name of the index

file.var 1s the file variable for the file to which the index relates

2.12-4

268 Teach Yourself OpenQM

Once the start position has been set, the program can walk through the index using
SELECTLEFT or SELECT RIGHT

SELECTRIGHT index.name FROM file.var {SETTING key} {TO list.no
}

where
index.name 1is the name of the index
file.var 1s the file variable for the file to which the index relates

key is the variable to be set to the key value associated with the
returned list

list.no is the select list number to create. This defaults to 0 if omitted.
Example
KEY = *"M*
SELECTINDEX *"POSTCODE®", KEY FROM CLIENTS.FILE
LOOP
LOOP

READNEXT CLIENT.NO ELSE EXIT
CRT CLIENT.NO
REPEAT
SELECTRIGHT "POSTCODE" FROM CLIENTS.FILE SETTING POSTCODE
UNTIL STATUSQ
WHILE POSTCODE[1,LEN(KEY)] = KEY
REPEAT

This program displays a list of all clients with postcodes beginning with M.

The SELECTINDEX looks for an index entry for a postcode of "M". This is unlikely to
exist and hence the select list will probably be empty. If it did find any records, the
inner loop would display these. Having processed this initial list, the SELECTRIGHT
moves one step right (i.e. in ascending order) through the index tree and builds a list
of these records. The POSTCODE variable is returned as the value of the indexed
item located. Processing continues until the SELECTRIGHT finds an item that does
not begin with the characters in KEY.

2.12-4

Introduction to QMBasic Programming 269

15.13 User Written Functions

We have seen many examples of functions that are part of the QMBasic language. In
this module we will find out how to add new functions of our own.

A typical QM application may include many functions. Some may be very simple
data manipulation tasks, others may involve complex file searches. What all
functions have in common is that they return a value as their result.

The FUNCTION Statement

A function commences with a FUNCTION statement in place of the (optional)
PROGRAM statement. As with the SUBROUTINE statement, this includes a list of
names to be used to refer to the data items passed into the function.

FUNCTION MYFUN(P, Q, R)

There is a limit of 254 arguments in a function.

The function may include any elements of the BASIC language. The value of the
function's result is passed back using a modified form of the RETURN statement.

RETURN value

Example

The function below takes a country code and a VAT number, validates the VAT
number based on rules in the country database and returns true/false to indicate if it
is valid. Do not worry too much about exactly what the function is doing but look at
it simply as an example of how functions work.

FUNCTION VALID.VAT(COUNTRY, IN.VAT_NO)
$INCLUDE COMMON.H

VAT.NO = TRIMCIN.VAT.NO, * ", "A") ;* Strip all spaces

READ CTR.REC FROM CTR.F, COUNTRY ELSE NULL

COUNTRY.PREFIX = CTR.REC<CT.VAT.PREFIX>

IF COUNTRY.PREFIX = ** THEN RETURN (@TRUE) ;* Not EEC

VAT.TEMPLATE = CTR.REC<CT.VAT.TEMPLATE>

* Template may be multivalued. Form a composite including
the prefix

TEMPLATE = CATS(REUSE(COUNTRY.PREFIX), VAT.TEMPLATE)

RETURN VAT_NO MATCHES TEMPLATE
END

2.12-4

270

Teach Yourself OpenQM

The DEFFUN Statement

Before a user written function can be used in a program, it must be defined using the
DEFFUN statement so that the compiler knows how the function should appear.

DEFFUN function(argl, arg2...) { CALLING cat.name }

where
function 1s the name of the function.
argl, etc are the arguments. The actual names given are ignored. The
compiler simply counts them.
cat.name is the name of the function in the system catalogue if it is different

from function.

Typically, an application would use an include record to hold the definitions of all
functions used within the application.

A function is actually a subroutine which returns its value through a hidden first
argument. The VALID.VAT function is identical to the subroutine below.

SUBROUTINE VALID.VAT(OK, COUNTRY, IN.VAT.NO)
$INCLUDE COMMON.H

OK = @TRUE
VAT.NO = TRIM(IN.VAT_NO, * ", "A") ;* Strip all spaces

READ CTR.REC FROM CTR.F, COUNTRY THEN
COUNTRY.PREFIX = CTR.REC<CT.VAT_.PREFIX>
IF COUNTRY.PREFIX # "" THEN
VAT .TEMPLATE = CTR.REC<CT.VAT.TEMPLATE>

* Template may be multivalued. Form a composite
including the prefix
TEMPLATE = CATS(REUSE(COUNTRY.PREFIX), VAT.TEMPLATE)

OK = VAT.NO MATCHES TEMPLATE
END
END

RETURN
END

2.12-4

Introduction to QMBasic Programming 271

15.14 QMBasic and Virtual Attributes

A dictionary I-type item (virtual attribute) is effectively a little subroutine that is
called by the query processor to calculate a value used in the report. User programs
can also call I-types in this way by use of the ITYPE() function. This is particularly
useful for complex calculations where it guarantees compatibility between the
program and the query processor and also simplifies maintenance by having only a
single definition of the expression.

Although intended for use with I-types, the ITYPE() function in QMBasic will work
with all dictionary data definition items. Use of a simple field reference such as a
D-type item will not be efficient when performed in this way but this flexibility does
allow programs to evaluate dictionary items without needing to handle each record
type differently. This can be particularly useful with programs that allow the user to
enter the data item name interactively.

Because the ITYPE() function was originally designed for use within the query
processor, its interface relies on some system variables used within the query
processor.

ITYPE(dict.rec)
where

dict.rec 1is the dictionary record to be evaluated.

The expression in dict.rec is compiled automatically when it is first referenced in a
query or explicitly by use of the COMPILE.DICT (CD) command. The compiled form
of this program is stored in fields 16 onwards of the dictionary record. The dict.rec
argument to the ITYPE() function is the whole of this dictionary record, not its name.

The ITYPE() function evaluates the expression in dict.rec. The record to be used as
the source data for this expression must be in the @RECORD variable. If the I-type
uses the record id, this must be in the @ID variable. These two variables are
maintained automatically within the query processor. When evaluating an I-type
from a program, the programmer must set up these items.

To execute an I-type from a program, the programmer must
1. Open the dictionary holding the I-type to be executed.
2. Read the I-type dictionary record.
3. Set up @RECORD and, perhaps, @ID.
4. Execute the ITYPE() function.

Steps 1 and 2 only need to be performed once in the program as the I-type dictionary
record does not change. Steps 3 and 4 need to be performed for each data record to be
processed.

2.12-4

272

Teach Yourself OpenQM

Example

The dictionary of our SALES file includes an I-type named SALE.VALUE to
calculate the total value of the order. We could use this in our ORDERS program to
display this value.

Assuming that the SALES file dictionary is open as SAL.D, we can read the I-type
dictionary record with a statement such as

READ ORDER.VALUE FROM SAL.D, "SALE.VALUE®
ELSE ABORT "Cannot read SALE.VALUE I-type*

This should be done outside the main loop of the program so that we only read the
dictionary entry once.

We can display the total value for an existing order by including the following
statements after exit from the loop that displays each order detail line.

@RECORD = SAL_.REC
TOTAL = ITYPE(ORDER.VALUE)
DISPLAY @(61,14) : FMT(OCONV(TOTAL, CASH.CONVERSION), "9R%)

The same three lines inserted into the bottom of the loop that enters detail lines for
new orders will display a running total value as the order is created.

Exercise

Add statements similar to the above to your ORDERS program to display the order
total value.

2.12-4

Introduction to QMBasic Programming 273

15.15 Printing

All of our programs so far have sent their output to the screen. Realistic applications
would also need to send output to printers.

A QM application does not usually take direct control of a printer. Instead,
application software sends its output to a numbered print unit with no knowledge of
where this output might actually go. The association between a print unit and its
destination is made from outside the application using the SETPTR command.

Each QM session has 256 print units, numbered from 0 to 255, available to it. These
might be configured to be different printers or, perhaps, different paper types on the
same printer. Unless an application specifically requests a different destination,
printed output is sent to print unit 0, the default printer.

The PRINT Statement

The PRINT statement is identical in format to the DISPLAY statement that we have
been using so far. The specified data item is output, followed by a carriage return
and line feed to move to the start of the next line.

Our earlier example of screen output becomes
PRINT "Outstanding Payment Details”
PRINT

PRINT "Open invoices " : NUM.OPEN
PRINT ~“Overdue invoices " : NUM.OVERDUE

As before, the output from this would be slightly untidy
Outstanding Payment Details

Open invoices 27
Overdue invoices 3

Again, we can use a series of items to be printed, separated by commas to advance to
the next tab column across the page.

Our example becomes,
PRINT "Outstanding Payment Details”
PRINT

PRINT "Open invoices ", NUM.OPEN
PRINT "Overdue i1nvoices ", NUM.OVERDUE

The above statements would produce output such as
Outstanding Payment Details

Open invoices 27
Overdue invoices 3

2.12-4

274

Teach Yourself OpenQM

As with DISPLAY, we can use a trailing colon to suppress the carriage return and
line feed, allowing us to build up a line in stages.

Perhaps surprisingly, the above examples would display the output on the screen.
The PRINT statement using the default print unit (0) directs its output to the screen
unless we have previously executed a PRINTER ON statement to send the output to
the default print unit. A corresponding PRINTER OFF statement would switch
output back to the screen.

The reason for this behaviour is that it allows us to write a program that can send its
output either to the screen or to the printer depending on whether we have executed
the PRINTER ON. Typically, once a program has turned on printer output, it
remains on for the entire program. The DISPLAY statement can be used for output
that is to go to the screen regardless of whether printer output has been turned on or
not.

Output directed to a printer is not sent to the device as it is generated by the
program. Instead, it is put aside in the file system and only sent to the printer when
the program executes a PRINTER CLOSE statement. This allows many users to
generate simultaneous printer output. The printer is closed automatically on return
to the command prompt and hence may not be necessary in all programs.

We cannot use the @() function to control the page position in PRINT statements
that may be directed to a printer as this function returns the control sequence
appropriate to the terminal device, not the printer. QM does not provide an
equivalent function for printer control sequences though it would not be difficult to
write one for a specific printer model. Instead, we must format each line using the
FMT() function or the substring assignment operator.

For example, to print a report of product numbers, stock levels and product
descriptions, we could use either of the following program fragments.

SELECT STK.F
LOOP
READNEXT PART.NO ELSE EXIT
READ STK.REC FROM STK.F, PART.NO THEN
PRINT PART.NO - * * - FMT(STK.REC<ST.QTY>, "4R")
PRINT = * : FMT(STK.REC<ST.DESCR>, "30L")
END
REPEAT

In this example, we have used FMT() for the variable length fields to pad them out to
a fixed column width. The part number is of fixed length and therefore does not need
a formatting. The FMT() function for the description field is also not really necessary
as this is the final data item in the line and hence does not need trailing spaces
added to bring it up to 30 characters.

2.12-4

Introduction to QMBasic Programming 275

An alternative way to format tabular data is to use substring assignment.

SELECT STK.F
LINE = SPACE(50)
LOOP
READNEXT PART.NO ELSE EXIT
READ STK.REC FROM STK.F, PART.NO THEN
LINE[1,3] = PART.NO
LINE[6,4] = FMT(STK.REC<ST.QTY>, "4R")
LINE[12,30] = STK.REC<ST.DESCR>
PRINT LINE
END
REPEAT

We have started by setting a variable named LINE to be 50 spaces. This is because,
in its default form, the substring assignment operation can only overwrite
characters. It cannot extend the data item.

Within the loop, we then use substring assignment to drop each item into the
required position within LINE. Note how we still need to use FMT() to right align the
quantity.

These two methods of constructing tabular data both have their merits. Imagine a
much more complex report with many columns. Using FMT(), we can adjust the
width of a column by altering just one number but it is hard to see where on the page
an item appears without adding up all the field widths. We also have to insert the
inter-column gaps explicitly.

Using substring assignment, we can see where an item is positioned immediately but
changing the width of a column would require all later substring positions to be
updated. We do not have to insert the inter-column gaps as these are provided by our
initialisation of LINE to be space filled.

Note also that we do not need to set LINE back to spaces each time around the loop
as substring assignment truncates or space fills to fit exactly into the specified
portion of the target variable.

2.12-4

276

Teach Yourself OpenQM

The HEADING and FOOTING Statements

QM can automatically add headers and footers to each page of output. The
programmer does not need to include any line counting to determine when these are
to appear.

The HEADING statement defines text to be printed or displayed at the top of each
page of output.

HEADING {NO.EJECT} text
where

text is the heading text. This may include control tokens as described
below.

The HEADING statement defines the text of a page heading and, optionally, control
information determining the manner in which the text is output. A page heading is
output whenever the first line of output on a page is about to be printed or displayed.

The heading text may be changed at any time by executing a further HEADING
statement. This will start a new page immediately unless the NO.EJECT option is
used.

The heading text may include the following control tokens enclosed in single quotes.
Multiple tokens may appear within a single set of quotes.

C Centres the current line of the heading text.

D Inserts the date. The default format is dd mmm yyyy (e.g. 24 Aug 2005) but can be
changed using the DATE.FORMAT command.

G Inserts a gap. Spaces are inserted in place of the G control code to expand the text to

the width of the output device. If more than one G control code appears in a single line,
spaces are distributed as evenly as possible.

When a heading line uses both G and C, the heading is considered as a number of
elements separated by the G control options. The element that contains the C option
will be centered. The items either side of the centered element are processed separately
when calculating the number of spaces to be substituted for each G option.

Hn Sets horizontal position (column) numbered from one. Use of H with C or with a
preceding G token may have undesired results.

L Inserts a new line at this point in the text.

Reverses the elements separated by G tokens in the current line on even numbered
pages. This is of use when printing double sided reports.

P{n} Insert page number. The page number is right justified in n spaces, widening the field if
necessary. If omitted, n defaults to four.

S{n} Insert page number. The page number is left justified in n spaces, widening the field if
necessary. If omitted, n defaults to one.

T Inserts the time and date in the form hh:mm:ss dd mmm yyyy. The format of the date

2.12-4

Introduction to QMBasic Programming 277

component can be changed using the DATE.FORMAT command.

A single quote may be inserted in the heading by use of two adjacent single quotes in the text.

Examples

HEADING "'LOANS REPORT"

This statement sets up a simple fixed text heading.

HEADING "LOANS REPORT ON *DL""

This statement adds the current date to the heading and includes a blank line
between the heading and the first data line.

HEADING ""C"LOANS REPORT"LDGPL™"

This statement outputs a two line heading on each page with a blank line before the
first data line. The first heading line has LOANS REPORT centred on the page. The
second line has the date at the left of the page and the page number at the right.

The FOOTING statement is identical in structure except that the NO.EJECT option
does not apply. The text appears at the bottom of each page of output.

The PAGE Statement

Programs do not normally need to do any line counting to control pagination but
there are times when it is required to force output to move to a new page. The PAGE
statement does this.

PAGE { page-no }
where

page.no is the number to be assigned to the next page. If omitted, page
numbering continues from the preceding page.

One common use of PAGE is when output consists of several lines that need to
remain together on the same page. A program can determine the number of lines
remaining on the page by use of the SYSTEM(4) function. This applies only to the
default printer (printer 0). For other printers, use the GETPU() function that can
return much information about a printer. Both of these functions are described in
the QM Reference Manual.

2.12-4

278

Teach Yourself OpenQM

Printing to Non-default Print Units.

Programs often use non-default print units. This might be to select a specific printer
from a number of available devices, the select a paper type on a printer or to produce
multiple reports simultaneously.

The PRINTER, PRINT, HEADING, FOOTING and PAGE statements all have an
optional ON unit clause to identify the print unit concerned.

The PRINTER ON and PRINTER OFF statements do not have an ON clause as they
control only the actions of output sent to print unit 0.

PRINT { ON unit } { print_list }
PRINTER CLOSE ON unit

HEADING { ON unit } heading.text
FOOTING { ON unit } footing.text

PAGE { ON unit } { expr }

The SETPTR Command

The SETPTR command (not a program statement) sets up the characteristics of a
print unit, defining the physical dimensions of the page (lines and width) and the
destination for the output.

The SETPTR command has a very large number of options. This section only shows
the general structure of the command. For full details see the QM Reference Manual.

SETPTR unit, width, lines, top.margin, bottom.margin, mode, {
options }

where

unit is the print unit number.

width is the page width in characters.

lines is the number of lines per page, including the margins described
below.

top.margin is the number of lines to be left blank at the top of each page.

bottom.margin is the number of lines to be left blank at the bottom of each
page.

mode 1 to output to a printer.

3 to output to the hold file ($HOLD).

4 to output to stderr.

5 to output to the terminal auxiliary port.
6 to output to a printer and the hold file.

options comma separated keywords specifying further details such as

2.12-4

Introduction to QMBasic Programming 279

the printer name, paper type, number of copies, defer time, etc.

Output using mode 3 is saved as a record in the hold file. Mode 3 is useful for
e Reports that may not need to be printed.
e Diagnostic output.

e Testing printed output formats.

Exercise

Write a new external subroutine to print an invoice for a given order. It should be
called from your ORDERS program whenever you write an order to the file.

The subroutine should take the order number as its only argument and produce its
output on the default print unit. You will need to do a SETPTR command to direct
the output to the hold file. For this exercise, to ensure that this will happen again
automatically if you leave QM and then re-enter, use EXECUTE to execute the
following SETPTR command at the top of your subroutine:

SETPTR 0,80,66,0,0,3,BRIEF

The BRIEF option omits the normal confirmation prompt from SETPTR. The output
from your subroutine should be formatted to fit an 80 character wide page.

Your invoice should have a format similar to the one shown below. The invoice
number is the same as the order number. The due date is calculated as 30 days from
the order date.

Write Right Stationery Supplies

Invoice 12002 Page
1

Order date: 04 JUN 07

Ross, Alan
47 Warren Road
Hansworth
Birmingham
Part no. Description Price Qty Total
013 Pencil, blue 0.28 2 0.56
012 Pencil, red 0.28 3 0.84
_____ 1.40

Payment due by: 04 JUL 07

2.12-4

280

Teach Yourself OpenQM

Suggested Solution
SUBROUTINE [INVOICE(ORDER_.NO)

$INCLUDE FILES.H
$INCLUDE FILEVARS.H

EQU DATE.CONVERSION TO "D2DMY[,A3]"
READ SAL.REC FROM SAL.F, ORDER.NO ELSE RETURN

* The SETPTR command is for testing only
EXECUTE "'SETPTR 0,80,66,0,0,3,BRIEF"

PRINTER ON
HEADING "Write Right Stationery Supplies®LL"Invoice ':ORDER.
NO:""G"Page "SLL""

PRINT "Order date: " : OCONV(SAL.REC<SL.DATE>, DATE.
CONVERSION)
PRINT

* Customer name and address

READ CUS.REC FROM CUS.F, SAL.REC<SL.CUST> THEN
PRINT CUS.REC<CS.NAME>
ADDR = CUS.REC<CS.ADDR>
LOOP
PRINT REMOVE(ADDR, MORE)
WHILE MORE
REPEAT
END

PRINT
PRINT

* Part details

PRINT * Part no. Description Price
Qty Total "

ORDER.TOTAL = O
IDX = 1
LOOP
PART.NO = SAL.REC<SL.ITEM, IDX>
UNTIL PART.NO = **
READ STK.REC FROM STK.F, PART.NO THEN
PRICE = SAL.REC<SL.PRICE, IDX>
QTY = SAL.REC<SL.QTY, IDX>
ITEM.TOTAL = PRICE * QTY
ORDER.TOTAL += ITEM.TOTAL

LINE = SPACE(72)
LINE[5,3] = PART.NO
LINE[14,30] = STK.REC<ST.DESCR>

LINE[47,7] = FMT(OCONV(PRICE, *MD2"), "7R")
LINE[57,4] = FMT(QTY, "4R")
LINE[64,9] = FMT(OCONV(ITEM.TOTAL, “MD2"), "9R")

2.12-4

Introduction to QMBasic Programming 281

PRINT LINE

END

IDX += 1
REPEAT
PRINT SPACE(63) : "========="
PRINT SPACE(63) : FMT(OCONV(ORDER.TOTAL, “MD2%), "9R")
PRINT
PRINT

PRINT “Payment due by: " : OCONV(SAL.REC<SL.DATE> + 30, DATE.
CONVERSION)

PRINTER CLOSE

RETURN
END

2.12-4

282

Teach Yourself OpenQM

15.16

Sequential Files

QM directory files are represented by an operating system directory and the records
in these files are represented by operating system files in the directory. These files do
not give the high performance of hashed files but they allow access to the data from
outside of QM. They are therefore particularly useful for data interchange.

Records in directory files are sometimes very large and may consist of a number of
lines of textual information with a fixed layout. In such cases, it may be worth
processing the data line by line. QMBasic provides statements to perform sequential
reading or writing of text data. These can only be used with directory files.

The OPENSEQ Statement
A record to be accessed sequentially must be opened using the OPENSEQ statement.

OPENSEQ file.name, 1d {mode} TO file.var {ON ERROR
statement(s)}

{LOCKED statement(s)}

{THEN statement(s)}

{ELSE statement(s)}

where
file.name evaluates to the VOC name of the directory file holding the
record to be opened.
id evaluates to the name of the record to be opened.
mode may be
APPEND Opens the item to append new data,
positioning at the end of any existing data
OVERWRITE Any old data is deleted
READONLY Opens the item for read only access
If omitted, the item is open for read/write access and any
existing data is retained
file.var 1s the name of a variable to be used in later statements
accessing this record.
statement(s) are statement(s) to be executed depending on the outcome of

the OPENSEQ statement.

At least one of the THEN or ELSE clauses must be present.

An alternative syntax allows an item to be opened by pathname instead of file name
and id:

2.12-4

Introduction to QMBasic Programming 283

OPENSEQ pathname {mode} TO file.var {ON ERROR statement(s)}

In either syntax, the named item is opened and associated with file.var for later
operations.

If the item already exists, the THEN clause is executed. An update lock will be set on
this item.

If the item does not already exist, the ELSE clause is executed and a subsequent
WRITESEQ using the file.var will create it. The ELSE clause is also executed if the
file does not exist or if it exists but is not a directory file. These three cases can be
distinguished by the value returned by the STATUS() function immediately after the
OPENSEQ. This may be

0 The record does not exist but can be created. An update lock will be set on the
record.

1 The file exists but is not a directory file.
2 The file does not exist.

The LOCKED clause is executed if the record is already locked by another process.

The ON ERROR clause is executed if a fatal error occurs when opening the record.
The STATUS() function will return an error code relating to the problem.

Examples

OPENSEQ ''BP'", "BOOKS"™ TO SEQ.F ELSE
STOP "Cannot open BOOKS program source"
END

This program fragment opens the BOOKS record in the BP file. No test of the
STATUS() value is included in the ELSE clause as we are opening the record to read
it.

OPENSEQ "C:\LOGS\AUDIT'" APPEND TO AUD.F ELSE
IF STATUS() THEN
STOP "Cannot open audit trail file"”
END
END

This example is opening an item to record an audit trail. It is valid that it does not
already exist and hence the ELSE clause must not cause the program to terminate
for a status value of zero.

2.12-4

284

Teach Yourself OpenQM

The READSEQ Statement

The READSEQ statement reads the next line from a directory file record previously
opened for sequential access.

READSEQ var FROM file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where
var is the variable to receive the data read from the file.
file.var is the file variable associated with the record by a previous
OPENSEQ statement.
statement(s) are statement(s) to be executed depending on the outcome of

the READSEQ.
At least one of the THEN or ELSE clauses must be present.

The next line of text from the file is read into var. If successful, the THEN clause is
executed and the STATUS() function would return zero.

If there is no further data to be read, the ELSE clause is executed.

Example

LOOP
READSEQ REC FROM SEQ.F ELSE EXIT
DISPLAY REC

REPEAT

This program fragment reads lines from the record previously opened for sequential
access via the SEQ.F file variable and displays each line on the terminal. The loop
terminates when the ELSE clause is executed when all data has been processed.

2.12-4

Introduction to QMBasic Programming 285

The WRITESEQ Statement

The WRITESEQ statement writes data to a directory file record previously opened
for sequential access. WRITESEQF is identical except that it force writes the data to
disk before continuing with the next statement.

WRITESEQ var TO file.var {ON ERROR statement(s)}
{THEN statement(s)}
{ELSE statement(s)}

where
var is the variable containing the data to be written.
file.var is the file variable associated with the record by a previous
OPENSEQ statement.
statement(s) are statement(s) to be executed depending on the outcome of

the WRITESEQ.

The keyword TO may be replaced by ON. At least one of the THEN or ELSE clauses
must be present.

The data in var is written to the record at the current file position, overwriting any
data already present. The THEN clause is executed if the write is successful.

The ELSE clause is executed if the WRITESEQ operation fails.

If a fatal error occurs, the ON ERROR clause is executed. The STATUS() function
can be used to establish the cause of the error. If no ON ERROR clause is present, a
fatal error causes an abort.

The WRITESEQF statement is identical to WRITESEQ except that execution of the
next statement does not occur until the data has been written to disk. With
WRITESEQ, the data may still be in internal buffers. WRITESEQF is useful when
generating audit trails.

Example

WRITESEQ REC TO SEQ.F ELSE STOP "Write error"

This statement writes the data in REC to the record open for sequential access via
the SEQ.F file variable.

2.12-4

286

Teach Yourself OpenQM

The WEOFSEQ Statement

The WEOFSEQ statement truncates a record open for sequential access at the
current position.

WEOFSEQ file.var {ON ERROR statement(s)}

where
file.var is the file variable associated with the record by a previous
OPENSEQ statement.
statement(s) are statement(s) to be executed if the action fails.

The WEOFSEQ statement truncates the record at the current position. Performed
immediately after the OPENSEQ), this will remove all data from the record and is
equivalent to use of the OVERWRITE option of OPENSEQ. Performed after one or
more READSEQ operations have been performed, all subsequent data is cleared
from the record.

The ON ERROR clause is executed if a fatal error occurs. The STATUS() function can
be used to determine the cause of the error. If no ON ERROR clause is present, a
fatal error causes an abort.

Example

OPENSEQ "$HOLD'™, *STOCKS™ TO STOCK.LIST THEN
WEOFSEQ STOCK.LIST
ELSE
IF STATUS() THEN ABORT "Cannot open stocks list"
END

This program fragment opens the record STOCKS in the $HOLD file for sequential
access. If it already exists, the THEN clause of the OPENSEQ is taken and the
existing data is removed using WEOFSEQ. If it does not already exist, the ELSE
clause is executed. The test of the STATUS() function causes the program to abort if
the record cannot be created by a subsequent WRITESEQ.

2.12-4

Introduction to QMBasic Programming 287

The CLOSESEQ Statement

The CLOSESEQ statement closes a record of a directory file previously opened for
sequential access.

CLOSESEQ file.var
where
filevar 1is the file variable previously associated with the directory file record
by use of the OPENSEQ statement.

The directory file record is closed, flushing the buffers and releasing the update lock.

Example

CLOSESEQ SEQ.F

This statement closes a directory file record previously opened using OPENSEQ
using SEQ.F as the file variable.

Other Sequential File Processing Operations

In this section, we have looked only at the most frequently used sequential file
processing operations. There are more, some of which are unique to QMBasic.

NOBUF Suppress buffering

READBLK Read a specific number of bytes instead of a text line

READCSV Read a comma separated line of text, parsing it into separate
variables

SEEK Position the file pointer

WRITEBLK Write a byte sequence instead of a text line

WRITECSV Assemble a comma separated line of text from multiple
variables

Full details of these operations can be found in the @M Reference Manual.

Exercise

Write a new program that exports the records from the STOCK file as a comma
separated variable (CSV) format item that could be read into the Excel spreadsheet
program. The output data should be written to a record named DATA in your BP file.

Each line should contain the part number and data from the corresponding STOCK
record. The price field should be converted to external format.

2.12-4

288

Teach Yourself OpenQM

Suggested Solution

You may have chosen to use the OPEN.FILES subroutine instead of opening the file
in the program.

PROGRAM EXPORT
$INCLUDE FILES.H

OPEN "STOCK®" TO STK.F ELSE STOP "Cannot open STOCK*®

OPENSEQ "BP", "DATA" to SEQ.F ELSE
IF STATUS() THEN STOP "Cannot open sequential i1tem”
END

SELECT STK.F
LOOP
READNEXT STK.ID ELSE EXIT
READ STK.REC FROM STK.F, STK.ID THEN
S = STK.ID - *,"

S = STK.REC<ST.DESCR> : *,*
S = STK.REC<ST.QTY> : *=,*
S := OCONV(STK.REC<ST.PRICE>, "MD2%)
WRITESEQ S TO SEQ.F ELSE STOP "Write error”
END
REPEAT
END

QMBasic has an easier way to do this exercise by using the WRITECSV statement:

PROGRAM EXPORT
$INCLUDE FILES.H

OPEN "STOCK®" TO STK.F ELSE STOP "Cannot open STOCK*®

OPENSEQ "BP", "DATA" to SEQ.F ELSE
IF STATUS() THEN STOP "Cannot open sequential i1tem”
END

SELECT STK.F
LOOP
READNEXT STK.ID ELSE EXIT
READ STK.REC FROM STK.F, STK.ID THEN
WRITECSV STK.ID, STK.REC<ST.DESCR>, STK.REC<ST.QTY>,
OCONV(STK.REC<ST.PRICE>, *MD2") TO SEQ.F ELSE STOP
"Write error-”
END
REPEAT
END

If the exercise had not asked for the price to be converted to external format, the
THEN clause of the READ could be reduced to:

WRITESEQ STK.ID:",":CHANGE(STK.REC, @FM, *,") TO SEQ.F ...

or, more simply,

2.12-4

Introduction to QMBasic Programming

WRITECSV STK.ID, STK.REC TO SEQ.F ...

289

relying on the fact that we are emitting all the data fields and they can be in the

same order as in the dynamic array.

2.12-4

290 Teach Yourself OpenQM

15.17 Transactions

A transaction is a group of related database updates to be treated as a unit that
must either happen in its entirety or not at all. From a programmer's point of view,
the updates are enclosed between two QMBasic statements, BEGIN TRANSACTION
and END TRANSACTION. All writes and deletes appearing during the transaction
are cached and only take place when the program executes a COMMIT statement.
The program can abort the transaction by executing a ROLLBACK statement which
causes all updates to be discarded.

An alternative transaction syntax is available using the TRANSACTION START,
TRANSACTION COMMIT and TRANSACTION ABORT statements. The two styles
may be mixed in a single application.

Transactions affect the operation of file and record locks. Outside a transaction, locks
are released when a write or delete occurs. Transactional database updates are
deferred until the transaction is committed and all locks acquired inside the
transaction are held until the commit or rollback. Because of this change to the
locking mechanism, converting an application to use transactions is usually rather
more complex than simply inserting the transaction control statements into existing
programs. The retention of locks can give rise to deadlock situations.

There are some restrictions on what a program may do inside a transaction. In
general, QM tries not to enforce prohibitive rules but leaves the application designer
to consider the potential impact of the operations embedded inside the transaction.
Note carefully, that developers should try to avoid user interactions (e.g. INPUT
statements) inside a transaction as these can result in locks being held for long
periods if the user does not respond quickly.

Example

BEGIN TRANSACTION
READU CUST1.REC FROM CUST.F, CUST1.ID ELSE ROLLBACK
CUST1.REC<C.BALANCE> -= TRANSFER.VALUE
WRITE CUST1.REC TO CUST.F, CUST1.1D

READU CUST2.REC FROM CUST.F, CUST2.ID ELSE ROLLBACK
CUST2.REC<C.BALANCE> += TRANSFER.VALUE
WRITE CUST2.REC TO CUST.F, CUST2.1D
COMMIT
END TRANSACTION

The above program fragment transfers money between two customer accounts. The
updates are only committed if the entire transaction is successful.

2.12-4

Introduction to QMBasic Programming 201

15.18 Triggers

Updating one record frequently requires other records to be modified too. For
example, if we were to delete an unfulfilled order from our SALES file, this would
require us to update the STOCK records to increment the quantity on hand.

Although this can be done by the application (and frequently is), QMBasic provides
an alternative mechanism by which this sort of action can be handled totally
automatically. This is known as a trigger because it is used to trigger related
events.

Triggers can also be used to provide data validation, refusing to write a record if it
fails the validation rules. Because the trigger is associated directly with the file
rather than being embedded in the application, it will be executed regardless of what
element of QM or the application is making the update.

A trigger function written as a subroutine declared as

SUBROUTINE name(mode, id, data, on.error, fvar)

where
name 1s the trigger subroutine name.
mode indicates the point at which the trigger function is being called:
1 FL$TRG.PRE.WRITE before writing a record
2 FL$TRG.PRE.DELETE before deleting a record
4 FL$TRG.POST.WRITE after writing a record
8 FL$TRG.POST.DELETE after deleting a record
16 FL$TRG.READ after reading a record
32 FL$TRG.PRE.CLEAR before clearing the file
64 FL$TRG.POST.CLEAR after clearing the file
Other values may be used in the future. Trigger functions should
be written to ignore unrecognised values.
id 1s the id of the record to be written or deleted.
data 1s the data. This is a null string for a delete or clearfile action.
on.error indicates whether the program performing the file operation has
used the ON ERROR clause to catch aborts.
fuar 1s the file variable that can be used to access the file. Beware that

reading, writing or deleting records via this file variable may cause
a recursive call to the trigger function. This argument can be
omitted for compatibility with earlier releases.

When writing trigger functions, the original data of the record to be written or

2.12-4

292

Teach Yourself OpenQM

deleted can be examined by reading it in the usual way. Trigger functions should not
attempt to write the record for which they are called. Neither should they release the

update lock on this record as this could cause concurrent update of the record.

If the value of data is changed by a pre-write trigger function, the modified data is
written to the file. Similarly, a read trigger can modify the data that will be returned
to the application that requested the read. Changes to the value of id will not affect

the database update in any way.

Trigger functions may perform all of the actions available to other QMBasic
subroutines including performing updates that may themselves cause trigger
functions to be executed.

The mode values correspond to bit positions in a binary value and hence a condition

such as
IF MODE = 4 OR MODE = 8 THEN ...

1s equivalent to
IF BITAND(MODE, 12) THEN ...

which can simplify some trigger functions.

The trigger subroutine must be catalogued like any other subroutine. It is then
linked to the file using the SET.TRIGGER command.

SET.TRIGGER file._name subr.name {modes}
where
file.name is the name of the file to which the trigger is to apply.

subr.name 1is the catalogue name of the trigger subroutine.

modes is any combination of the following tokens indicating when the

trigger will be executed.
PRE.WRITE Before a write operation
PRE.DELETE Before a delete operation
PRE.CLEAR Before a clear file operation
POST.WRITE After a write operation
POST.DELETE After a delete operation
POST.CLEAR After a clear file operation
READ After a read operation

If no modes are specified, the default is PRE.WRITE and

PRE.DELETE.

After it has been set up, the trigger function is loaded into memory when the file is
opened and is called for all operations defined by modes. Modifying and recataloguing
the trigger function will have no effect on processes that have the file open until they

close and reopen it.

2.12-4

Introduction to QMBasic Programming 203

If the trigger function is not in the catalogue or has the incorrect number of
arguments, no error occurs until the first action that would call the function. Note
that the trigger function must be visible to all accounts that may reference the file.
Where a file is used by multiple accounts, this can be achieved by using global
cataloguing, sharing a private catalogue, or ensuring that the VOC entry for a locally
catalogued trigger function is present in each account. Although it would be possible
for a shared file to use a different trigger function depending on the account from
which it is referenced, this is not recommended. Files that are to be accessed via
QMNet require that associated trigger functions are globally catalogued.

The subroutine is passed a mode flag to indicate the action being performed, the
record id, the record data (read or write operations) and a flag indicating whether the
QMBasic ON ERROR clause is present. The subroutine may do whatever processing
the application designer wishes. If the write or delete is to be disallowed, the
pre-write or pre-delete trigger function should set the @ TRIGGER.RETURN.CODE
variable to a non-zero value such as an error number or an error message text to
cause the write or delete to take its ON ERROR clause if present or to abort if
omitted. The STATUS() function will return ER$TRIGGER when executed in the
program that initiated the file operation. Programs should test STATUS() rather
than testing for @TRIGGER.RETURN.CODE being non-zero to determine whether
the trigger function has disallowed the write or delete as
@TRIGGER.RETURN.CODE is only updated when the error status is set.

2.12-4

294 Teach Yourself OpenQM

15.19 Sockets

QMBasic includes a set of functions that allow network connections to be established
with other systems or other software on the same system. This section gives a brief
overview of the socket interface of QMBasic.

What is a Socket?

A socket is one end of a bidirectional link between two software components across a
network or within the same system. A socket is established using a network
address (typically written as four dot separated values such as 193.118.13.11) and
a port number. These can be considered as being much like a telephone number
and extension. The network address identifies the device on the network to which a
connection is to be established and the port number identifies a service within that
device.

Just as we can look up a telephone number in a directory, so the internet has
domain name servers that fulfil the same role, allowing users to reference a
network destination by name instead of its number. For example, www.opengm.com
translates to 81.31.112.103. We use domain name servers partly because names are
usually easier to remember than numbers and also because the service may be
moved to a different server (and hence different network address) without changing
the name.

There is a central registry of standard port numbers (e.g. 23 for a telnet connection
or 80 for a web server) but these are not rigidly enforced. By default, QM uses ports
4242 and 4243 for terminal and QMClient connections respectively.

A socket may be established in two modes; stream and datagram. A stream
connection represents a channel over which a succession of messages may be passed
in each direction until connection is broken by one participant. A datagram
connection consists of a single message and response pair after which the connection
is broken.

There are also two protocols used to manage the internal structure of a message;
TCP (transmission control protocol) and UDP (user datagram protocol). These are
usually paired up with the corresponding socket modes such that TCP is used over
stream connections and UDP over datagram connections but the underlying network
system allows variations.

Socket Programming for Stream Connections

Creating a stream connection is very easy. Although one end of this connection is
likely to be something other than a QMBasic program, the example below is based on
two QMBasic programs communicating across a network. Full details of the
functions described here can be found in the QM Reference Manual.

2.12-4

Introduction to QMBasic Programming 205

The server process (the one that is waiting for an incoming connection) starts
listening by using a sequence of the form:

SRVR.SKT = CREATE.SERVER.SOCKET('***, 4000, SKT$STREAM +
SKTS$TCP)

IF STATUS() THEN STOP "Cannot initialise server socket”
SKT = ACCEPT.SOCKET.CONNECTION(SRVR.SKT, 0)

IF STATUS() THEN STOP T“Error accepting connection-

The CREATE.SERVER.SOCKET() call listens for incoming TCP stream connections.
The first argument can be used to specify the network address on which to listen.
Use of a null string as in the above example listens on all network addresses defined
for the system on which the program is run. The second argument is the port number
so this example is listening for all connections to port 4000 on the local system.
SRVR.SKT becomes a socket variable that is monitoring for incoming connections.
This is then used in a call to ACCEPT.SOCKET.CONNECTION() which will wait for
a connection to arrive. A timeout period can be specified, zero implying no timeout.
On return from this function, if no error has occurred, SKT will be the socket

variable for the specific connection. The program could resume listening for further
incoming connections using ACCEPT.SOCKET.CONNECTION().

Once a connection has been established, data can be read or written using
READ.SOCKET() and WRITE.SOCKET)).

DATA = READ.SOCKET(SKT, 100, SKT$BLOCKING, O0)
N = WRITE.SOCKET(SKT, DATA, 0, 0)

This example reads a message of up to 100 bytes and simply echoes the data back to
the other end of the connection. The SKT$BLOCKING flag specifies that
READ.SOCKET() should wait for incoming data rather than returning immediately
if there is no data waiting. Note that this waits for any data, not the full 100 bytes
specified as the limit. It may be necessary to perform several reads to assemble the
data sent from the other end of the connection.

Finally, the connection can be terminated using CLOSE.SOCKET(), remembering
that the server socket also needs to be closed when no new connections are to be
handled. Like all QMBasic variables, if a program terminates and a socket variable
1s discarded, the socket will be closed automatically.

CLOSE.SOCKET SKT
CLOSE.SOCKET SRVR.SKT

The client program that wants to connect to this server would be of the form

SKT = OPEN.SOCKET(''193.118.13.14", 4000, SKT$BLOCKING)
IF STATUS() THEN STOP "Cannot open socket*®

N = WRITE.SOCKET(SKT, DATA, 0, 0)

REPLY = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)
CLOSE.SOCKET SKT

The OPEN.SOCKET() function opens an outgoing connection to a server
(194.118.13.14 in this example) that is listening on the specified port (4000).

2.12-4

296

Teach Yourself OpenQM

Datagram Connections

A datagram connection is typically used to send a single message to a server which
returns a single response and then closes the connection. The domain name servers
mentioned above use this form of data exchange when looking up a name.

The server program becomes simpler:

SRVR.SKT = CREATE.SERVER.SOCKET('*", 4000, SKT$DGRM+ SKT$UDP)
IF STATUS() THEN STOP "Cannot initialise server socket”

DATA = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)

N = WRITE.SOCKET(SKT, DATA, 0, 0)

CLOSE.SOCKET SKT

The client program becomes:

SKT = OPEN.SOCKET(''193.118.13.14", 4000, SKT$DGRM + SKT$UDP +
SKT$BLOCKING)

IF STATUS() THEN STOP "Cannot open socket*®

N = WRITE.SOCKET(SKT, DATA, 0, 0)

REPLY = READ.SOCKET(SKT, 100, SKT$BLOCKING, 0)

CLOSE.SOCKET SKT

2.12-4

Introduction to QMBasic Programming 297

15.20 Local Subroutines and Functions

We have seen internal subroutines that are part of a program module, sharing all
the variables within that module, and we have seen external subroutines that have
their own separate variables. QMBasic extends the language definition found in
other multivalue products to add the concept of local subroutines that can have
their own private variables but can also see the variables used elsewhere in the
program module. There is also a local function that works in much the same way
but returns a result.

Local subroutines appear at the end of the program, after the other internal
subroutines but before the final END statement. The local subroutine starts with a
line

LOCAL SUBROUTINE name

and ends with
RETURN
END

A local subroutine must have a RETURN as the END carries an implied STOP just
like the one at the end of the main program.

The subroutine is entered using GOSUB just like an internal subroutine. In fact, so
far, there doesn't seem to be any difference.

The first key feature of a local subroutine is that it can have private variables.
These are declared by one or more statements of the form
PRIVATE varl, var2, ...

immediately after the LOCAL SUBROUTINE declaration. The variables may be
simple scalar items of dimensioned matrices:
PRIVATE A, B, C(2,5)

The variables named in the PRIVATE statement are private to the one local
subroutine. They cannot be accessed from outside it. All variables defined in the
main body of the module can be used within the local subroutine unless they have
the same name as a private variable.

Private variables are not just names with limited scope; they are dynamically
created on entry to the subroutine and discarded on return. The impact of this is that
a local subroutine can call itself recursively and each instance has its own separate
copy of the private variables.

The second difference between internal and local subroutines is that a local
subroutine may have arguments.

LOCAL SUBROUTINE name(argl, arg2)
Each argument may be a scalar variable or a matrix name prefix by MAT, exactly as

in a SUBROUTINE declaration. When using a matrix argument, there must be a
DIM statement to define the dimensionality of the matrix. Again, as with internal

2.12-4

298

Teach Yourself OpenQM

subroutines, an argument may be specified as being passed by value by enclosing the

argument name in parenthesis.

The GOSUB statement is extended to support arguments when calling local
subroutines.

A local function is created in much the same way, using a declaration of the form
LOCAL FUNCTION name(argl, arg2)

.. -Tunction body...

RETURN value
END

Local functions must be defined using DEFFUN just like their external counterparts:

DEFFUN name(argl, arg2) LOCAL

2.12-4

Introduction to QMBasic Programming 209

15.21 Object Oriented Programming

Object Oriented (often abbreviated to OO) programming provides a different way to
develop applications. QM integrates the object oriented programming features into
the QMBasic language rather than requiring developers to learn a whole new skill
set. If you have experience of other object oriented languages, you will find the
concepts to be familiar though there may be some differences in usage.

What is an Object?

An easy way to approach this question is to compare an object with a subroutine.

e A subroutine is a set of program operations that work on data typically
provided via its argument variables.

e An object is a set of data items that have associated program operations.

In many ways, the object can be treated as a "black box" that has a number of
operations that can be performed without any external understanding of how they
are executed. This is no different from a subroutine but, because the data is
embedded within the object, it is impossible for an application to perform operations
that are not provided by the object. This encapsulation results in programs that
are usually significantly easier to understand and maintain than their non-object
oriented counterparts. Having said that, object oriented programming is not a
replacement for everything we have seen so far. Rather it is an additional tool that
has use in specific places in an application.

Another important point about objects is that there may be more than one instance
of the object. Consider an object that represents a network connection to another
system. This might support operations to open the connection, read data, write data
and close the connection. If we implemented this as a subroutine (or, more likely, a
separate subroutine for each operation), we would need to maintain some form of
table of connection data, probably as a set of dimensioned matrices, and each
subroutine call would need to include the relevant table index.

In the object oriented version of this, there would be a separate instance of the object
for each connection but all of the data for management of the connection would be
hidden within the object itself. It would also be impossible for a developer to perform
any actions on the connection that were not provided by the object.

Class Modules

An object is defined by a class module, a QMBasic program that is introduced by
the CLASS statement instead of the PROGRAM, SUBROUTINE or FUNCTION
statements that we have met so far. This module defines the persistent data that
lives within the object and a set of public subroutines and public functions that
are the program operations provided by the object.

An object is a runtime instance of the class, instantiated by use of the OBJECT()

2.12-4

300

Teach Yourself OpenQM

function.
obj = OBJECT(name)

where
obj is the variable to represent the instantiated object
name 1s the catalogue name of the class module

A second use of the OBJECT() function with the same catalogue name will create a
second instance of the object. On the other hand, copying the object variable creates
a second reference to the same instance of the object.

Persistent Data

In other program types, data is stored either in local variables that are discarded on
return from the program, or in common blocks that persist and may be shared by
many programs. A class module can use these just like any other program but it has
the additional concept of persistent data that is related to the particular instance of
the object and is preserved across repeated entry to the object. If an object is
instantiated more than once, each instantiation has its own version of the persistent
data.

Persistent data is defined using the PRIVATE or PUBLIC statements:

PRIVATE A, B(5)
PUBLIC C, D(2,3)

These statements must appear at the start of the class module, before any
executable program statements. Data items defined as private are only accessible by
program statements within the class module. Data items defined as public can be
accessed from outside of the class module (subject to rules set out below). Private and
public data items are frequently used to store what other object oriented
programming environments would term property values.

PRIVATE and PUBLIC variables are set to unassigned when the object is
Iinstantiated.

Public Subroutines and Functions

Another important difference between class modules and other program types is that
a class module usually has multiple entry points, each corresponding to a public
function or public subroutine. Indeed, simply calling the class module by its
catalogue name will generate a run time error.

Just as with conventional QMBasic functions and subroutines, a public function
must return a value to its caller whereas a public subroutine does not (though it can
do so by updating its arguments).

A public function is defined by a group of statements such as
PUBLIC FUNCTION XX(A,B,C)

2.12-4

Introduction to QMBasic Programming 301

.. -processing. ..
RETURN Z
END

where XX is the function name, A, B and C are the arguments (optional), and Z is the
value to be returned to the caller.

A public subroutine is defined by a group of statements such as
PUBLIC SUBROUTINE XX(A,B,C)

.. .-processing. ..
RETURN
END

where XX 1s the subroutine name and A, B and C are the arguments (optional).

In either case, a whole matrix can be referenced as an argument by following it with
the dimension values. For example,
PUBLIC SUBROUTINE CALC(CLIENT, CLI_REC(1), TOTVAL)

In this example, the dimension value has been shown as 1 to emphasise that the
actual value is irrelevant. The compiler uses this purely to determine that CLI.REC
is a single dimensional matrix, possibly representing a database record read using
MATREAD. The alternative syntax used with SUBROUTINE statements by
prefixing the matrix name with MAT and using a DIMENSION statement to set
dimensionality is not available for public subroutines and functions.

The number of arguments in a public function or subroutine is normally limited to 32
but this can be increased using the MAX.ARGS option of the CLASS statement. For
more information on this, see the QM Reference Manual.

Both styles of public routine allow use of the VAR.ARGS qualifier after the argument
list to indicate that it is of variable length. Argument variables for which the caller
has provided no value will be unassigned. The ARG.COUNT() function can be used to
find the actual number of arguments passed. A special syntax of three periods (...)
used as the final argument specifies that unnamed scalar arguments are to be added
up to the limit on the number of arguments. These can be accessed using the ARG()
function and the SET.ARG statement. See the PUBLIC statement in the QM
Reference Manual for more details of this feature.

It is valid for a class module to contain combinations of a PUBLIC variable, PUBLIC
SUBROUTINE and PUBLIC FUNCTION with the same name. If there is a public
subroutine of the same name as a public variable, the subroutine will be executed
when a program using the object attempts to set the value of the public item. If there
is a public function of the same name as a public variable, the function will be
executed when a program using the object attempts to retrieve the value of the
public item. If both are present, the public property variable will never be directly
visible to programs using the object.

Sometimes an application developer may wish a public variable to be visible to users
of the class for reading but not for update. Although this could be achieved by use of
a dummy PUBLIC SUBROUTINE that ignores updates or reports an error, public
variables may be defined as read-only by including the READONLY keyword after
the variable declaration:

PUBLIC A READONLY

2.12-4

302

Teach Yourself OpenQM

or
PUBLIC B(5) READONLY

Referencing an Object

References to an object require two components, the object variable and the name of
a property or method within that object. The syntax for such a reference is

OBJ->PROPERTY

or, if arguments are required,
OBJ->PROPERTY(ARG1, ARG2, ...)

Any argument may reference a whole matrix by prefixing the matrix name with the
keyword MAT, for example
OBJ->CALC(CLIENT, MAT CLI.REC, TOTVAL)

When used in a QMBasic expression, for example,
ITEMS += OBJ->LISTCOUNT

the object reference returns the value of the named item, in this case LISTCOUNT.
This may be a public variable or the value of a public function. If the same name is
defined as both, the public function is executed.

When used on the left of an assignment, for example,
OBJ->WIDTH = 70

the object reference sets the value of the named item, in this case WIDTH. This may
be a public variable or the value of a public subroutine that takes the value to be
assigned as an argument. If the same name is defined as both, the public subroutine
is executed.

This dual role of public variables and functions or subroutines makes it very easy to
write a class module in which, for example, a property value may be retrieved
without execution of any program statements inside the object but setting the value
executes a subroutine to validate the new value.

All object, property and public routine names are case insensitive.

Using Dimensions and Arguments

Public variables may be dimensioned arrays. Subscripts for index values are handled
in the usual way:

OBJ->MODE(3) = 7
where MODE has been defined as a single dimensional array. If MODE has an

associated public subroutine, the indices are passed via the arguments and the new
value as the final argument. Thus, if MODE was defined as

PUBLIC SUBROUTINE MODE(A,B)

the above statement would pass in A as 3 and B as 7.

2.12-4

Introduction to QMBasic Programming 303

Execution of Object Methods

Other object oriented languages usually provide methods, subroutines that can be
executed from calling programs to do some task. QMBasic class modules do this by
using public subroutines. The calling program uses a statement of the form:

OBJ->RESET
where RESET is the name of the public subroutine representing the method. Again,
arguments are allowed:

OBJ->RESET(5)

This leads to an apparent syntactic ambiguity between assigning values to public
properties and execution of methods. Actually, there is no ambiguity but the
following two statements are semantically identical:

0BJ->X(2,3)
0BJ->X(2) = 3

Expressions as Property Names

All of the above examples have used literal (constant) property names. QMBasic
allows expressions as property names in all contexts using a syntax

OBJ->(expr)

where expr is an expression that evaluates to the property name.

Object References in Subroutine Calls

Any reference to an object element in a subroutine call, for example
CALL SUBNAME(OBJ->VAR)

is considered to be read access and is passed by value. If the subroutine updates the
argument, this will not update the object property value.

The ME Token

Sometimes an object needs to reference itself. The reserved data name ME can be
used for this purpose:
ME->RESET

2.12-4

304

Teach Yourself OpenQM

The CREATE.OBJECT Subroutine

When an object is instantiated using the OBJECT() function, part of this process
checks whether there is a public subroutine named CREATE.OBJECT and, if so,
executes it. This can be used, for example, to preset default values in public and
private variables. Up to 32 arguments may be passed into this subroutine by
extending the OBJECT() call to include these after the catalogue name of the class
module.

The DESTROY.OBJECT Subroutine

An object remains in existence until the last object variable referencing it is
discarded or overwritten. At this point, the system checks for a public subroutine
named DESTROY.OBJECT and, if it exists, it is executed. This subroutine is
guaranteed to be executed, even if the object variable is discarded as part of a
program failure that causes an abort. The only situation where an object can cease to
exist without this subroutine running to completion is if the DESTROY.OBJECT
subroutine itself aborts.

The UNDEFINED Name Handler

The optional UNDEFINED public subroutine and/or public function can be used to
trap references to the object that use property names that are not defined. This
handler is executed if a program using the object references a name that is not
defined as a public item. The first argument will be the undefined name. Any
arguments supplied by the calling program will follow this. The ARG.COUNT() and
ARG() functions can be used to help extract this data in a meaningful way.

If there is no UNDEFINED subroutine/function, object references with undefined
names cause a run time error.

Inheritance

Sometimes it is useful for one class module to incorporate the properties and methods
of another. This is termed inheritance.

The INHERIT statement
INHERIT name

can be used to define this relationship. At run time, a link is formed between the
object that contains the INHERIT statement and a new instance of the named class.
An object may inherit many other classes.

Use of the INHERITS clause of the CLASS statement
CLASS MYCLASS INHERITS inherited.class

effectively inserts declaration of a private variable of the same name as the inherited

2.12-4

Introduction to QMBasic Programming 305

class (removing any global catalogue prefix character) and adds

name = OBJECT(inherited.class)
INHERIT name

to the CREATE.OBJECT subroutine. The inherited.class element can be a comma
separated list of class names.

The name search process that occurs when an object is referenced scans the name
table of the original object reference first. If the name is not found, it then goes on to
scan the name tables of each inherited object in the order in which they were
inherited. Where an inherited object has itself inherited further objects, the lower
levels of inheritance are treated as part of the object into which they were inherited.
If the name is not found, the same search process is used to look for the undefined
name handler.

An inherited object can subsequently be disinherited using DISINHERIT.

Syntax Summary

CLASS name {INHERITS classl, class2}
PUBLIC A {READONLY}, B(3), C
PRIVATE X, Y, Z

PUBLIC SUBROUTINE SUB1(ARG1, ARG2) {VAR.ARGS}
.. -processing. ..
END

PUBLIC FUNCTION FUNC1(ARG1, ARG2) {VAR.ARGS}
.. -processing. ..
RETURN RESULT

END

.. -Other QMBasic subroutines. ..
END

Note that the above summary shows how a class module may contain internal and
local subroutines just like any other program.

2.12-4

306 Teach Yourself OpenQM

15.22 QMBasic Debugger

As you worked through the programming exercises, there were probably times when
your program didn't behave as you wanted. Unless you looked ahead at this section,
you may have found it difficult to see exactly what was happening.

The QM interactive debugger enables the developer to step through an application
program in a convenient manner, stopping at desired points and examining data
items.

Programs to be debugged must be compiled with the DEBUGGING option to the
BASIC command or by including the $DEBUG compiler directive in the program
source. At run time, the debugger will stop at selected places in the execution of
these programs but will run normally through programs not compiled in this mode.
Catalogued programs and subroutines may be debugged in exactly the same way as
other programs.

The debugger is activated either by use of the DEBUG command in place of RUN or
by a DEBUG statement encountered during execution of a program. The latter
method enables debug mode to be entered part way through execution of the
program. You can even condition the DEBUG statement:

IF @LOGNAME = "GEORGE' THEN DEBUG

so that the program runs as normal for everyone except the user identified by the
condition.

The debugger can also be entered from the break key action prompt if any program
currently being executed has been compiled in debug mode.

During application development it is often worth compiling the entire application in
debug mode. Execution of the program with the RUN command will not invoke the
debugger unless a DEBUG statement is encountered. There is a small performance
impact of running a debug mode program in this way but it is usually not significant.

When used with QMConsole on a Windows system, via the QMTerm terminal
emulator or the bundled version of AccuTerm using a terminal type with the -at
suffix, the debugger operates in full screen mode. The display is divided into two
areas. The upper portion of the screen shows the source program with the line about
to be executed highlighted. The lower portion of the screen is used to echo commands
and to display their responses. The top line of the screen displays the program name
and current line and element number. The display may be toggled between the
debugger and the application by use of the F4 key. Full screen mode also supports a
command stack similar to that found at the command prompt.

When used on other terminals, the debugger output is mixed with the application
output.

The current position in a program is referenced by a line number and an element
number. Most QMBasic source lines hold only a single element (element 0) but lines
with multiple statements separated by semicolons or clauses of IF/THEN/ELSE
constructs, etc, are considered to represent separate execution elements. The

2.12-4

Introduction to QMBasic Programming 307

debugger can step line by line or element by element through a program.

The debugger cannot step through statements inserted into a program from an
include record. In such cases, it will step over the included statements as though they
were part of the immediately preceding statement.

Debugger commands fall into two groups; function keys and word based commands.
In many cases both forms are available. Not all terminals support function keys.

Function Key Commands

(Some function keys may not be available on all terminal emulations)

F1 Display help screen

F2 Abort program

F3 Stop program

F4 Display user screen (normal program output)
F5 Free run

Fe6 Step over subroutine call

F7 Step program element

F8 Step line

Ctrl-F7 Run to parent program / subroutine (internal or external)
Ctrl-F8 Exit program, returning to parent program or external subroutine

If an application dynamically rebinds the codes sent by keys used by the debugger,
setting the DEBUG.REBIND.KEYS mode of the OPTION command will cause the
debugger to reset these to the bindings specified in the terminfo entry for the current
terminal type on each entry to the debug screen. Note that the debugger cannot
revert to the user bindings on exit as it has no way to determine what these were.
This feature is available only with AccuTerm.

Word Based Commands

Where a short form is available, this is the upper case portion of the command as
shown. Commands may be entered in any mix of upper and lower case.

ABORT Quit the program, generating an abort.

BRK n Set a breakpoint on line n.

CLR Clear all breakpoints.

CLR n Clear breakpoint on line n.

DUMP var path Dumps a variable to an operating system level file.

EP Exit program, returning to parent program or external
subroutine.

EXit Exit subroutine, returning to parent program, internal or
external subroutine.

Goto n Continue execution at line n.

HELP Display help page.

2.12-4

308

Teach Yourself OpenQM

PDUMP

Quit

Run

Runn

SET var=value
STACK

Step n

Step .n
StepOver
STOP
UnWatch
View

Watch var
XEQ command

Generate a process dump file.

Quit the program, generating an abort.

Free run.

Run to line n.

Change content of a program variable
Display the call stack. The current program is shown first.
Execute n lines.

Execute n elements.

Step over subroutine call

Quit the program, generating a stop.
Cancels an active watch action.

Display user screen (normal program output)
Watches the named variable.

Execute command. Note that some commands may interfere
with correct operation of the debugger.

The following commands apply only to full screen mode debugging:

SRC

SRC name
SRC n
SRC +n
SRC -n

Revert to default program source display

Show source of program name.

Display around line n of currently displayed program.
Move display forward n lines in program.

Move display backward n lines in program.

The following commands apply only to non-full screen mode debugging:

SRC
SRC n

SRC n,m

Display current source line

Display source line n. Entering a blank debugger command line
after this command will display the next source line.

Display m lines starting at source line n. The value of m is
limited to three lines less than the screen size. Entering a blank
debugger command line after this command will display the
next m source lines.

Displaying Program Variables

Entering a variable name preceded or followed by a slash (/) or a question mark (?)
displays the type and content of the given variable (var/, /var, var?, ?var). This name
may be a variable in a common block defined in the current program. If the common
block has not been linked at the time the command 1s entered, the variable will
appear as unassigned. For programs compiled with case insensitive names, the
debugger is also case insensitive.

Private local variables in a subroutine declared using the LOCAL statement can be
referenced using a name formed by concatenating the subroutine name and variable
name with a colon between them. If a subroutine is executed recursively, it is only

2.12-4

Introduction to QMBasic Programming 309

possible to view the current instance of the variables.
The debugger will not recognise names defined using EQUATE or $DEFINE.

The debugger recognises variable names STATUS(), INMAT(), COL1(), COL2() and
OS.ERROR() to display the corresponding system variable. All @-variables may also
be displayed except for @VOC (which is a file variable) and those representing
constants such as @FM and @TRUE.

Display of long strings is broken into short sections to fit the available display space.
Entering Q at the continuation prompt will terminate display.

When displaying strings with an active remove pointer, the position of this pointer is
also shown.

If the variable is a matrix, the name may be followed by the index value(s) for the
element to be displayed. Entry of the name without an index will display the
dimensions of the matrix. Subsequent presses of the return key display successive
elements of the matrix until either all elements have been displayed or another
command is entered.

CL1.REC/

Array: Dim (20)
<return>
CL1_.REC(O)
<return>
CLI1.REC(2)
<return>
CLI1.REC(2)
CL1.REC(8)/
Integer: 86

Unassigned

String (8 bytes): "J Watson"

13756

The variable name may be followed by a field, value or subvalue reference which will
be used to restrict the display if the data is a string. Note that this qualifier has no
effect on other data types.

REC/

String (11 bytes,R=4): "487~912w338"
REC<1>/

String (3 bytes): "487"

REC<2,1>/

String (3 bytes): "912"
Entering a slash alone will repeat the most recent display command.

Analysis of very large character strings is sometime easier from outside the
debugger. The DUMP command can be used to dump the contents of a variable to an
operating system level file that can then be processed with other tools.

The /* command, available in full screen mode only, displays all variables in the
program, one per line. The page up, page down, cursor up and cursor down keys can
be used to move through the data. When the current line marker in the leftmost
column is positioned on an array, pressing the return key shows the elements of the
array. When positioned on a character string, pressing the return key shows the

2.12-4

310 Teach Yourself OpenQM

string data in hexadecimal and character form. In all cases, the Q key returns to the
previous screen.

Changing Program Variables

The SET command can be used to alter the value of a variable.

SET var = value to set a numeric value

SET var = "string"” to set a string value. Double quotes, single
quotes or backslashes may be used to enclose
the string.

SET var(row,col) = value to set a matrix element

Watching Variables

The WATCH command causes the debugger to monitor the named variable.
Whenever a value is assigned to this variable (even if the value is the same as
currently stored), the debugger will stop program execution and display the new
value. Only one variable can be watched at a time.

The UNWATCH command cancels the watch action. The watch action is
automatically cancelled when the watched variable ceases to exist. This might be
return from the program in which the variable exists, redimensioning a common
block, etc.

Debugging Phantom Processes

Phantom processes and those acting as the server side of a QMClient connection can
be debugged using the PDEBUG command:

PDEBUG {command}

If no command is specified, the PDEBUG command waits for a phantom or QMClient
process running in the same account as the same user name to attempt to enter the
debugger. At that point, the process executing the PDEBUG command will enter the QMBasic
debugger and can use this in the usual way except that it is not possible to view the application
screen because a phantom process is not associated with a terminal device.

If command is specified, PDEBUG starts a phantom process to execute command and then enters
the debugger as above.

Process Dump Files

QM includes the option to generate a process dump file containing a detailed report
of the state of the process. There are three ways to generate a process dump:

2.12-4

Introduction to QMBasic Programming 311

e A process dump will be created automatically if the DUMP.ON.ERROR mode
of the OPTION command is active and the process aborts either due to an
error detected by QM or from use of the ABORT statement in a QMBasic
program.

e Selection of the P option following use of the break key.

e Use of the PDUMP command. This can be used to generate a dump of a
different process such as a phantom or a QMClient process.

By default, the process dump is directed to an operating system level file named
gmdump.n in the QMSYS account directory where n is the QM user number. The
directory to receive the dump file can be changed using the DUMPDIR configuration
parameter. See the QM Reference Manual for more details.

The file consists of a number of sections detailing the current state of the user
process at the time of the error.

1. Environment data
QM version number
Licence number and site name
User number
Process 1d
Parent user number (zero except in phantom processes)
User name

2. @-variables
@-variables that are likely to be useful in determining the cause of an error.

3. Locks
The report shows all task locks, file locks and record locks owned by the process.

4. Program stack
This contains an entry for each program, working backwards from the program in
which the error occurred. For each program, the dump shows

Program number (used in some cross-references within the dump)

Program name, instruction address and line number. Line numbers cannot be
shown if the program was compiled with no cross reference tables or these
were removed when the program was catalogued.

Program status flags showing various special program states.
GOSUB return stack, if not empty.

Variables. Local variables are sorted alphabetically. Elements of a common
block are shown in memory order and are only dumped on the first program
that references the block. Non-printing characters in strings are replaced
by \nn where nn is the hexadecimal character value. Backslash characters
are shown as \\. Character string data is not line wrapped to simplify
exploration of the data using tools such as the SED editor.

2.12-4

312

Teach Yourself OpenQM

Exercise

Add a DEBUG statement at the top of your ORDERS program. Run the program and

explore some of the commands listed above.

2.12-4

What Next? 313

16

What Next?

If you have worked step by step through this course material, you should now have a
good understanding of OpenQM and be competent to develop and maintain
applications. There is, however, much more for you to discover once you are
completely comfortable with this material. Areas to explore in the QM Reference
Manual include:

Data encryption - How to secure your sensitive data against theft.

QMClient - How to access QM from other environments such as Visual Basic, C, web
servers, etc.

QMNet - Allows access to data on other QM servers with full concurrency control
(locking).

In addition, there are many more commands and QMBasic statements that we have
not discussed here.

If your application originated in a Pick style environment, it is likely to have PQ
(Proc) type VOC entries. Proc is the predecessor of paragraphs and, whilst it has
some useful capabilities, it is discouraged for new developments in favour of
paragraphs or QMBasic programs. Procs are documented in the VOC section of the
QM Reference Manual.

There is a whole section of the QM Reference Manual covering system administration
topics.

Take time to skim through the manuals looking for topics that we have not covered.
You learn best by practising so try things by writing simple test programs. You will
rapidly become an expert in all that QM has to offer.

2.12-4

	Introduction
	The Command Environment
	The QM File System
	Editing Data
	The VOC File
	Dictionaries
	Conversion and Formatting
	Virtual Attributes
	A and S-type Dictionary Records
	The Query Processor
	Alternate Key Indices
	Paragraphs
	Menus
	Printing
	Introduction to QMBasic Programming
	QMBasic Language Elements
	Terminal Handling
	Conditional Execution and Looping
	File Handling
	Conversion and Formatting
	String Manipulation
	Dynamic Arrays
	Matrix File Operations
	Select Lists
	External Subroutines
	External Command Execution
	QMBasic Use of Alternate Key Indices
	User Written Functions
	QMBasic and Virtual Attributes
	Printing
	Sequential Files
	Transactions
	Triggers
	Sockets
	Local Subroutines and Functions
	Object Oriented Programming
	QMBasic Debugger

	What Next?

