AccuSoft Smart User Interface Library

The AccuSoft Smart User Interface Library is a collection of Pick/BASIC subroutines and terminal definitions that enable intelligent data entry and display functions for character-based applications. The supplied terminal definitions support most of the emulations available in AccuTerm 2K2, and work with real terminals as well as with AccuTerm. When used with AccuTerm Visual Styles, these routines provide a Windows-like look and feel for character-based applications.

The library includes subroutines for both display and input functions. The intent is to provide replacements for the typical PRINT and INPUT statements found in most character-based applications. The display functions utilize the terminal’s visual display attributes to render screen elements using a consistent style. If AccuTerm Visual Styles are supported, screen elements such as labels, text fields, lists, command buttons can be rendered with appropriate borders (inset for text fields, raised for command buttons) giving these elements the same appearance as their GUI counterparts as seen in traditional Windows applications.

The input functions included in the library utilize the terminal’s key codes to recognize function, editing and cursor keys, and perform appropriate actions based on the key pressed. Key codes are defined in the terminal definitions, and are translated to terminal-independent command codes. If an input routine recognizes a command, like cursor left, it takes appropriate action. If the command is not recognized by the input function, it is returned as an argument to the calling program. The calling program can then take appropriate action, or simply ignore the key (and call the input function again to resume input).

The input functions fully support the mouse when used with AccuTerm. Mouse clicks and double-clicks are translated into special command codes, and the mouse position is maintained in an internal state variable. A subroutine is provided to help detect mouse hits based on screen coordinates.

The library includes windowing support. A new text window can be opened by the application overlaying all or part of the current screen. Coordinsates for all screen elements in a window are relative to that window’s upper-left corner. Windowing is available with the standard or Internet version of AccuTerm, and for certain real terminals:.Wyse 60, ADDS 4000, VT420. Windowing support in real terminals requires that the terminal have more than one page available, and the maximum window depth is limited to the number of pages available with that terminal.

Preferences and styles are controlled by an INCLUDE item, SUI.CONFIG, which can be customized. The designation of display attributes and border styles for various screen elements is specified in this item. Also, certain operating preferences, such as whether a text input field is initially selected when activated, or whether a block cursor is used to indicate overtype mode, can be adjusted by editing this item.

The terminal definitions supplied with the library have been carefully designed to work both with AccuTerm and with real terminals. Real terminals do not have all of the capabilities available when using AccuTerm (such as mouse support and Visual Styles), but the best functionality available is utilized. Some terminal emulations work better than others. The best emulations are Wyse 60, ADDS 4000 (using AccuTerm’s Viewpoint A2 Enhanced emulation) and VT420. Wyse 50 uses embedded visual attributes which cause problems when adjacent screen elements are not at least 2 characters apart, and ADDS Viewpoint A2 only supports a single attribute. True VT keyboards do not have a usable F5 key, and there is no Back Tab key either.

Screen elements supported by the Smart User Interface Library:

Window: multiple overlapped windows are supported if using AccuTerm, or a terminal with multiple pages. All other screen elements are created within the current window. Closing a window restores the screen as it was before the window was opened.

Label: displays titles, field labels and other text which is not part of an input field.

Text: single-line or multi-line text input. The text input routine recognizes cursor and editing keys. Multi-line text is automatically “wrapped”. Text fields automatically scrolls left and right (single line) or up and down (multi line). Insert and overtype modes are supported.

List Box: single-select or multi-select list boxes allow selection of one or more items from a list. The list box input routine recognizes the cursor keys (editing keys are ignored by the list box). Items in a list box may contain multiple columns.

Button: accepts a simple button press or mouse click as input. Buttons are normally used as components of a Button Bar.

Button Bar: displays one or more rows of buttons. Each button has a caption (one or more lines), hot key letter and state (enabled or disabled). The button bar recognizes the cursor keys. Editing keys are ignored.

Frame: a frame can be drawn anywhere on the screen using single or double lines. Frames are drawn using the terminal’s line-drawing characters.

Smart User Interface Library Includes

SUI.CONFIG

The SUI.CONFIG include item defines various preferences which control the behavior of the display and input routines in the library. Each of the settings is commented, with a description of the various values that can be specified. There are four sections in this item which are used to associate visual display attributes and border styles with the various screen elements in each display state (active, inactive, disabled, selected). Each section handles terminals with different capabilities. The four sections are:

Multiple attributes with borders (AccuTerm Visual Styles)

Multiple attributes without borders (no Visual Styles)

Single attribute with borders (AccuTerm Visual Styles)

Single attribute without borders (no Visual Styles)

The SUI.CONFIG include item is used internally by the library subroutines, and is not normally required in any user-written programs. If you find that you need to include this item in your program, be sure to include it after SUI.TERMDEF. If you modify this item, be sure to re-compile the entire library.
SUI.TERMDEF

The SUI.TERMDEF include item defines the TermDef() array and equates terminal display commands, key codes, parameters and state information to elements in that array. It also defines the command code constants (TERM.ENTER$, TERM.F1$, etc.) and error codes (SUI.ERROR.BADVAR$, SUI.ERROR.INVPOS$, etc.) returned by the various input subroutines. By convention, constants end with the dollar-sign symbol and array elements do not. This item must be included in any program or subroutine that calls any of the library routines. The TermDef() array is initialized by calling the SUI.GET.TERM subroutine.

SUI.INPCHR

The SUI.INPCHR include item contains the platform-specific code required to perform a single character raw input. You must modify this item to work with your specific host platform. Two variables are returned: Q (the raw character) and SQ (the ASCII value of Q). Be sure to re-compile the SUI.INPUT.CHAR subroutine after modifying this item.

SUI.INPELSE

The SUI.INPELSE include item contains the platform-specific code required to perform a single character raw input if data is available immediately (in the typeahead buffer), or is received within about 200ms. You must modify this item to work with your specific host platform. Two variables are returned: Q (the raw character) and SQ (the ASCII value of Q). If no character is available, return with Q = '' and SQ = -1. Be sure to re-compile the SUI.INPUT.CHAR subroutine after modifying this item.

SUI.TACLEAR

The SUI.TACLEAR include item contains the platform-specific code required to clear the type-ahead buffer. You must modify this item to work with your specific host platform. If your host platform does not support this function you can probably comment out all code in this item. Be sure to re-compile the entire library after modifying this item.
SUI.CASING

The SUI.CASING include item contains the platform-specific code required to perform case-sensitive string comparison. You must modify this item to work with your specific host platform. If your platform always performs case-sensitive comparisons you can simply comment out all code in this item. Be sure to re-compile the SUI.INPUT.CHAR subroutine after modifying this item.
Smart User Interface Library Initialization Functions

SUI.GET.TERM

The SUI.GET.TERM subroutine is used to initialize the TermDef() array based on the current terminal type. The terminal type returned by the SYSTEM(7) function is appended to ‘TERMDEF.’ and is then used as the ID of the terminal definition in the SUIBP file. If the terminal definition is missing, this subroutine displays an error message and STOPs. There is a single master terminal definition for each supported terminal type, and there may be many synonym definitions. A synonym definition contains a single line, in the form of USE: WY60, where WY60 is the master terminal definition. The TERMDEF.XXX item may be used as a template for defining new terminal definitions (or simply copy any similar existing definition to a new ID and modify it).

SUI.GET.TERM must be called once when the application first starts. Pass the TermDef() array as an argument to all of the library routines.

Calling syntax:

CALL SUI.GET.TERM(MAT TermDef)

Input arguments:

None

Output arguments:

TermDef() array
initialized based on current term type.

Smart User Interface Library Display Functions

SUI.CLEAR.RECT

The SUI.CLEAR.RECT subroutine is used to clear a rectangle in the current window (normally, the current window is the entire screen). If the specified Width or Height arguments exceed the window size, they are truncated to the window size. This routine is optimized to use the terminal’s native CLRBLK function to clear a rectangle if supported by the terminal.

Calling syntax:

CALL SUI.CLEAR.RECT(Left, Top, Width, Height, RtnCom,
MAT TermDef)

Input arguments:

Left, Top
upper-left corner of rectangle (relative to current window).
Width, Height
size of rectangle to clear.

TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

RtnCom
zero if success, else error code.

SUI.OPEN.WINDOW

The SUI.OPEN.WINDOW subroutine is used to open a new window. Window position is specified in absolute screen coordinates. If the specified Width or Height arguments exceed the window size, they are truncated to the window size. The current screen size is available in the TERM.WIDTH and TERM.HEIGHT elements of the TermDef() array. Unless the “fake” option is specified, this routine requires scripting support in AccuTerm or multiple terminal pages. The routine is optimized to use the terminal’s native CPYBLK function to copy the current screen to a new page if supported by the terminal.

Calling syntax:

CALL SUI.OPEN.WINDOW(Left, Top, Width, Height, Opts, Title, Frame, WinID, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of window (absolute screen coordinates).
Width, Height
size of window including title & frame.

Opts
F - fake it on terminals that have no windowing support or are out of page memory. RtnCom will be TERM.FAKEWIN$ if screen will not be restored by SUI.CLOSE.WINDOW when the window is closed, and must be refreshed manually by the calling program.

Title
window title (may be null if window does not have a title).

Frame
window frame style:

0 = no frame

1 = single line frame

2 = double line frame
TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

WinID
window ID which may be passed to SUI.CLOSE.WINDOW.
RtnCom
zero if success, TERM.FAKEWIN$ if true windowing is not available and F option specified, else error code.

TERM.WINDOW
element in TermDef() array updated with new window information.

SUI.CLOSE.WINDOW

The SUI.CLOSE.WINDOW subroutine is used to close a window. If window was opened with the F option and the value of RtnCom returned by SUI.OPEN.WINDOW was TERM.FAKEWIN$, this routine simply sets RtnCom to TERM.REFRESH$ and returns. The calling program must then refresh the screen to the state before the window was opened. This routine is optimized to use the terminal’s native SELPAGE function to restore the original screen if supported by the terminal.

Calling syntax:

CALL SUI.CLOSE.WINDOW(WinID, RtnCom, MAT TermDef)

Input arguments:

WinID
window ID returned by SUI.OPEN.WINDOW, or zero for current window.
TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

RtnCom
zero if success, TERM.REFRESH$ if true windowing is not available and F option specified when the window was opened, else error code.

TERM.WINDOW
element in TermDef() array updated.

SUI.PRINT

The SUI.PRINT subroutine is a wrapper for SUI.DISPLAY.TEXT, and is designed to be a drop-in replacement for PRINT statements used to display data values. For other text display (titles, field labels, etc.), call SUI.DISPLAY.LABEL instead.

Calling syntax:

CALL SUI.PRINT(Left, Top, Width, Height, Value, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of text field (relative to current window).
Width, Height
size of text field. If the size exceeds the current window size, it is truncated to the window size.

Value
current value of text field, including NEWLINE characters if multi-line field.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

none
SUI.DISPLAY.LABEL

The SUI.DISPLAY.LABEL subroutine is used to display a label. Labels are single lines of text, and can be left, right or center justified. Labels can be displayed in two states: normal or disabled. The terminal display attribute and border style for the label is defined in the SUI.CONFIG include item.

Calling syntax:

CALL SUI.DISPLAY.LABEL(Left, Top, Width, Just, State, Caption, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of label (relative to current window).
Width
optional label width or zero to use actual width of caption text. If width exceeds the current window width, it is truncated to the window width.

Just
justification (L = left, R = right, C = center, T = text). T is the same as L, except the cursor is positioned after the last character in the label caption.

State
0 or 1 if label is displayed in the normal state, 2 for disabled.

Caption
label text.

TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

RtnCom
zero if success, else error code.

SUI.DISPLAY.TEXT

The SUI.DISPLAY.TEXT subroutine is used to display a text field. Text fields may be single or multiple lines. Text fields can be displayed in four states: inactive, active, disabled or selected. Multi-line text fields have a Height greater than one and are automatically “wrapped” at appropriate positions. The Value of a multi-line text field may contain NEWLINE characters, as defined in SUI.CONFIG, for hard line breaks. A text field can optionally be displayed as a password – the value is displayed as a string of asterisks. The border of the text field can optionally be suppressed, simulating a multi-line label with line wrapping. The terminal display attribute and border style for text fields is defined in the SUI.CONFIG include item.

Calling syntax:

CALL SUI.DISPLAY.TEXT(Left, Top, Width, Height, State, Opts, Value, BegPos, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of text field (relative to current window).
Width, Height
size of text field. If the size exceeds the current window size, it is truncated to the window size.

State
field display state:

0 = inactive

1 = active

2 = disabled

3 = selected

Opts
options:

P = password – display asterisks instead of

actual text

M = display text as a message, suppressing the

border

Value
current value of text field, including NEWLINE characters if multi-line field.

BegPos
character position to display in the upper-left corner of field. Set to 0 or 1 to display beginning of text, or –1 to display end of text. Otherwise text will be scrolled so that the specified character position is displayed in the upper-left corner. Note: this argument is returned by the SUI.INPUT.TEXT function and can be passed to SUI.DISPLAY.TEXT to maintain the scroll position.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

RtnCom
zero if success, else error code.

SUI.DISPLAY.LIST

The SUI.DISPLAY.LIST subroutine is used to display a list box. A list box may be single-selection or multiple-selection. List boxes can be displayed in three states: inactive, active, or disabled. Any items in the list which are selected will be displayed in the selected state, regardless of the list box display state. The terminal display attribute and border style for list boxes is defined in the SUI.CONFIG include item.

List items may contain multiple columns, and a heading can be specified for each column, as well as a column width. The width of the last column is automatically adjusted to fill the remaining width of the list box.

Calling syntax:

CALL SUI.DISPLAY.LIST(Left, Top, Width, Height, State, Opts, Headings, Widths, List, Selection, BegPos, RtnCom,
MAT TermDef)

Input arguments:

Left, Top
upper-left corner of the list box (relative to current window).
Width, Height
size of list box. If the size exceeds the current window size, it is truncated to the window size.

State
list display state:

0 = inactive

1 = active

2 = disabled

Opts
options: M = multiple items may be selected

Headings
multi-valued list of column headings

Widths
multi-valued list of column widths

List
multi-valued list of items; sub-values separate columns within each list item.

Selection
one-based index of the currently selected item. If multiple selections are specified, this is a multi-valued list of selected items. Null or zero means no item is selected.
BegPos
one-based index of the item to display on the top line of the list box. Note: this argument is returned by the SUI.INPUT.LIST function and can be passed to SUI.DISPLAY.LIST to maintain the scroll position.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

RtnCom
zero if success, else error code.

SUI.DISPLAY.BUTTON

The SUI.DISPLAY.BUTTON subroutine is used to display a single command button. This function is not normally called by user applications; call the SUI.DISPLAY.BTNBAR function instead to display one or more buttons that function as a group. Buttons can be displayed in three states: inactive, active, or disabled. A button has a caption, which may contain one or more lines of text. The terminal display attribute and border style for buttons is defined in the SUI.CONFIG include item.

Calling syntax:

CALL SUI.DISPLAY.BUTTON(Left, Top, Width, Height, State, Caption, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of button (relative to current window).
Width, Height
size of button. If the size exceeds the current window size, it is truncated to the window size.

State
button display state:

0 = inactive

1 = active

2 = disabled

Caption
button caption text. Multi-line captions are supported – separate multiple lines with sub-value-marks.
TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

RtnCom
zero if success, else error code.

SUI.DISPLAY.BTNBAR

The SUI.DISPLAY.BTNBAR subroutine is used to display a row of command buttons. Each button in the bar can be displayed in two states: enabled or disabled. Each button in the bar has a caption, hotkey and display state. Button alignment within the bar display area is adjustable (left, right, center, top, bottom, middle). The terminal display attribute and border style for buttons is defined in the SUI.CONFIG include item.

Calling syntax:

CALL SUI.DISPLAY.BTNBAR(Left, Top, Width, Height, States, Captions, HotKeys, Opts, Btn, Chr, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of button bar (relative to current window).
Width, Height
size of button bar. If the size exceeds the current window size, it is truncated to the window size.

States
multi-valued list of button display states:

0 or 1 = enabled

2 = disabled

If this list is null, all buttons are enabled.

Captions
multi-valued list of button captions. Multi-line captions are supported – separate multiple lines with sub-value-marks.

HotKeys
multi-valued list of unique single-letter hot keys. If a hot key letter for a button is pressed, the corresponding button will be activated. This list (or any value in the list) may be null if no hot key is associated with the corresponding button.)
Opts
alignment options:

L = buttons are left-justified within the bar

R = buttons are right justified within the bar

C = buttons are centered horizontally within the bar

T = buttons are aligned at the top of the bar

B = buttons are aligned at the bottom of the bar

M = buttons are centered vertically within the bar
TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

RtnCom
zero if success, else error code.

SUI.DISPLAY.FRAME

The SUI.DISPLAY.FRAME subroutine is used to draw a frame using the terminal’s line-drawing characters. A frame can be drawn using single or double lines (double lines are not supported by all terminals; if double lines are specified but the terminal does not support double lines, single lines will be used instead).

Calling syntax:

CALL SUI.DISPLAY.FRAME(Left, Top, Width, Height, Frame, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of frame (relative to current window).
Width, Height
size of frame. If the size exceeds the current window size, it is truncated to the window size.

Frame
frame style: 1 = single line, 2 = double line.
TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

RtnCom
zero if success, else error code.

Smart User Interface Library Input Functions

SUI.INPUT.CHAR

The SUI.INPUT.CHAR subroutine is used to input a single keystroke or mouse click. If a keystroke is for a normal character, the character is returned. If the keystroke is for a function, editing or cursor key, or a mouse click, the keystroke is translated into a terminal independent command code and the translated code is returned. This function is not normally called by user applications – it is used internally by all of the Smart User Interface Input functions. This subroutine must be called with ECHO OFF!

Calling syntax:

CALL SUI.INPUT.CHAR(Chr, RtnCom, MAT TermDef)

Input arguments:

TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

Chr
if a normal character key was pressed the character is returned in this variable, otherwise it is null.

RtnCom
zero if a normal character key was pressed, otherwise the terminal-independent command code for the key.

TermDef()
TERM.MOUSEADDR updated to reflect last mouse click position.
SUI.INPUT

The SUI.INPUT subroutine is a wrapper for SUI.INPUT.TEXT, and is designed to be a drop-in replacement for normal INPUT statements. It simply calls SUI.INPUT.TEXT in a loop until RtnCom is ENTER, thereby ignoring all other function and cursor keys. Mouse clicks within the text field are processed; all other mouse input is ignored. See SUI.INPUT.TEXT for more information.

Calling syntax:

CALL SUI.INPUT(Left, Top, Width, Height, Opts, MaxLen, Value,
MAT TermDef)

Input arguments:

Left, Top
upper-left corner of text field (relative to current window).
Width, Height
size of text field. If the size exceeds the current window size, it is truncated to the window size.

Opts
options:

R = read-only (value cannot be modified)

S = initial field state is “selected”

N = initial field state is “active”

P = password – display asterisks instead of

actual text

MaxLen
maximum length, or zero for unlimited.

Value
current value of text field, including NEWLINE characters if multi-line field.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

Value
updated value of the text field.

SUI.INPUT.TEXT

The SUI.INPUT.TEXT subroutine is used to enter or edit a text field. Text fields may be single or multiple lines. When this function is called, the current value is displayed in the active or selected state, depending on the value of SUICFG.SELECT.TEXT in the SUI.CONFIG include item and options passed to this function. When the function returns, the value is re-displayed in the inactive state. Multi-line text fields have a Height greater than one and are automatically “wrapped” at appropriate positions. The Value of a multi-line text field may contain “newline” characters, as defined by SUICFG.NEWLINE in the SUI.CONFIG include item, for hard line breaks. A text field can optionally be used to enter passwords – the actual text is displayed as a string of asterisks. A text field can also be “read only”, and an optional maximum field length may be specified. The terminal display attribute and border style for text fields is defined in the SUI.CONFIG include item.

This function recognizes normal cursor and editing keys. For single-line text fields, if the value is longer than the field width, the contents scroll left or right in the display area in response to newly entered characters or cursor keys. For multi-line text fields, the value is automatically “wrapped” to fit the width of the text field, and lines are scrolled vertically if the contents higher than the field height. Double-clicking on a text field changes the field state to “selected”. When the text field is in the “selected” state, typing any normal key causes the existing value to be replaced by the character just typed. Pressing the Delete or Backspace keys erases the current value of the field. Pressing any cursor key or clicking the mouse in the text field changes the field state back to “active”.

The text field input function operates in two modes: insert and overtype. The initial mode is specified by the value of SUICFG.INSERT.TEXT in the SUI.CONFIG include item. The mode is toggled by pressing the Insert key. If the terminal supports both line and block cursor styles, and if SUICFG.CURSOR.MODE is non-zero, then the cursor style is changed to reflect the current mode. The value of SUICFG.OVER.BLOCK in the SUI.CONFIG include item determines which cursor style is used for overtype mode (the opposite style is used to indicate insert mode).

When this subroutine returns, the Value argument contains the new value, and the RtnCom argument contains the command code. The normal command code is TERM.ENTER$, TERM.TAB$ or TERM.STAB$ (Back Tab). Shift+Enter is internally translated to TERM.ENTER$. Other possible command codes are TERM.F1$ … TERM.SF12$, and for single-line text fields TERM.UP$, TERM.DOWN$, TERM.PGUP$ and TERM.PGDN$ are also possible. If the mouse was clicked outside of the text field area, the command code will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$.

Pressing the Enter (or Shift+Enter) key at the beginning of a single or multi-line text field returns immediately without changing the field value. For multi-line text fields, pressing the Enter key at any other position inserts a hard line-break. If SUICFG.DOUBLE.ENTER in the SUI.CONFIG include item is non-zero, pressing Enter twice at the end of the field will return with the extra lines removed from the value and the command code will be TERM.ENTER$.

Calling syntax:

CALL SUI.INPUT.TEXT(Left, Top, Width, Height, Opts, MaxLen, Value, BegPos, CurPos, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of text field (relative to current window).
Width, Height
size of text field. If the size exceeds the current window size, it is truncated to the window size.

Opts
options:

R = read-only (value cannot be modified)

S = initial field state is “selected”

N = initial field state is “active”

P = password – display asterisks instead of

actual text

MaxLen
maximum length, or zero for unlimited.

Value
current value of text field, including NEWLINE characters if multi-line field.

BegPos
character position to display in the upper-left corner of field. Set to 0 or 1 to display beginning of text, or –1 to display end of text. Otherwise text will be scrolled so that the specified character position is displayed in the upper-left corner. Note: this argument is updated by this routine and can be passed back again to maintain the scroll position.

CurPos
character position where cursor should be positioned. Note: this argument is updated by this routine and can be passed back again to maintain the cursor position.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

Value
updated value of the text field.

BegPos
character position currently displayed in the upper-left corner of the field.

CurPos
character position of the cursor.

RtnCom
command code that caused this routine to return. This is normally TERM.ENTER$, TERM.TAB$, TERM.STAB$, TERM.F1$ … TERM.SF12$. For single-line text fields, it could also be TERM.UP$, TERM.DOWN$, TERM.PGUP$ or TERM.PGDN$. If the mouse was clicked outside of the text field area, RtnCom will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$.

SUI.INPUT.LIST

The SUI.INPUT.LIST subroutine is used to select one or more items from a list box. A list box may be single-selection or multiple-selection. When this function is called, the list box is displayed in the active state. Any items in the list box which are currently selected will be displayed in the selected state. When the function returns, the list box is re-displayed in the inactive state. The terminal display attribute and border style for list boxes is defined in the SUI.CONFIG include item.

List items may contain multiple columns, and a heading can be specified for each column, as well as a column width. The width of the last column is automatically adjusted to fill the remaining width of the list box.

This function recognizes normal cursor keys. For single-selection list boxes, the Up and Down cursor keys move the selection up or down in the list. Clicking an item in the list moves the selection to the clicked item. For multi-selection list boxes, the Up and Down cursor keys move the active item up or down in the list. Pressing the Space Bar toggles the selection state of the active item. Clicking an item makes it active and toggles its selection state. The editing keys (Insert, Delete, Backspace) are ignored. Page Up and Page Down keys scroll the list in the appropriate direction.

If an alpha or numeric key is pressed, the list is searched for an item that begins with that character. If an item is found, the item is selected (or activated in multi-selection lists). The search proceeds from the item after the current selected or active item, and proceeds to end of the list and then wraps back to the beginning.

When this subroutine returns, the Selection argument contains the new selection (index of the selected item, or a multi-valued list of selected items), and the RtnCom argument contains the command code. The normal command code is TERM.ENTER$, TERM.TAB$ or TERM.STAB$ (Back Tab). Shift+Enter is internally translated to TERM.ENTER$. Other possible command codes are TERM.F1$ … TERM.SF12$, and for single-line text fields. If the mouse was clicked outside of the text field area, the command code will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$. If the mouse was double-clicked on an item in the list box, the command code will be TERM.DBLLEFTBUTTON$, TERM.DBLRIGHTBUTTON$ or TERM.DBLMIDBUTTON$.

Calling syntax:

CALL SUI.INPUT.LIST(Left, Top, Width, Height, Opts, Headings, Widths, List, Selection, BegPos, CurPos, RtnCom,
MAT TermDef)

Input arguments:

Left, Top
upper-left corner of the list box (relative to current window).
Width, Height
size of list box. If the size exceeds the current window size, it is truncated to the window size.

Opts
options: M = multiple items may be selected

Headings
multi-valued list of column headings

Widths
multi-valued list of column widths

List
multi-valued list of items; sub-values separate columns within each list item.

Selection
one-based index of the currently selected item. If multiple selections are specified, this is a multi-valued list of selected items. Null or zero means no item is selected.
BegPos
one-based index of the item to display on the top line of the list box. Note: this argument is updated by this function and can be passed back again to maintain the scroll position.

CurPos
one-based index of the active list item (where cursor should be positioned.) Note: this argument is updated by this routine and can be passed back again to maintain the cursor position.

TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

Selection
one-based index of currently selected item. If multiple selections are supported, this is a multi-valued list of selected items. Null or zero means no items is selected.

BegPos
one-based index of the item displayed on the top line of the list box.

CurPos
one-based index of the active list item.

RtnCom
command code that caused this routine to return. This is normally TERM.ENTER$, TERM.TAB$, TERM.STAB$, TERM.F1$ … TERM.SF12$. If the mouse was clicked outside of the list box, RtnCom will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$. If the mouse was double-clicked on an item in the list box, RtnCom will be TERM.DBLLEFTBUTTON$, TERM.DBLRIGHTBUTTON$ or TERM.DBLMIDBUTTON$.

SUI.INPUT.BUTTON

The SUI.INPUT.BUTTON subroutine is used to accept input from a single command button. This function is not normally called by user applications; call the SUI.INPUT.BTNBAR function instead to accept input from one or more buttons that function as a group. When this function is called, the button is displayed in the active state. When the function returns, the button is re-displayed in the inactive state. A button has a caption, which can contain one or more lines of text. The terminal display attribute and border style for buttons is defined in the SUI.CONFIG include item.

Clicking on the button with the mouse, or pressing Enter, Shift+Enter or the Space Bar, returns with command code TERM.ENTER$. Pressing any alpha or numeric key returns the character in Chr with command code TERM.HOTKEY$.

Calling syntax:

CALL SUI.INPUT.BUTTON(Left, Top, Width, Height, Caption, Chr, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of button (relative to current window).
Width, Height
size of button. If the size exceeds the current window size, it is truncated to the window size.

Caption
button caption text. Multi-line captions are supported – separate multiple lines with sub-value-marks.
TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

Chr
alpha or numeric character that caused this function to return (used for HotKey matching in a button bar).

RtnCom
command code that caused this routine to return. This is normally TERM.ENTER$, TERM.TAB$, TERM.STAB$, TERM.HOTKEY$, TERM.LEFT$, TERM.RIGHT$, TERM.UP$, TERM.DOWN$, TERM.PGUP$, TERM.PGDN$, TERM.HOME$, TERM.END$, TERM.F1$ … TERM.SF12$. If the mouse was clicked outside of the button, RtnCom will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$.

SUI.INPUT.BTNBAR

The SUI.INPUT.BTNBAR subroutine is used to accept input from a row of command buttons, returning the number of the button that was “clicked”. Each button in the bar can be displayed in two states: enabled or disabled. Each button in the bar has a caption, hotkey and display state. Button alignment within the bar display area is adjustable (left, right, center, top, bottom, middle). The terminal display attribute and border style for buttons is defined in the SUI.CONFIG include item.

The button bar recognizes the cursor keys and activates the next or previous button based on the direction. Pressing Enter, Shift+Enter or the Space Bar returns command code TERM.ENTER$. Clicking a button with the mouse sets the active button and returns with command code TERM.ENTER$. Check the Btn argument to determine which button was “pressed”. If an alpha key is pressed, the next button with a corresponding hot key is activated. If no buttons have a matching hot key, the function returns setting Chr to the un-matched character with command code TERM.HOTKEY$.

Calling syntax:

CALL SUI.INPUT.BTNBAR(Left, Top, Width, Height, States, Captions, HotKeys, Opts, Btn, Chr, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of button bar (relative to current window).
Width, Height
size of button bar. If the size exceeds the current window size, it is truncated to the window size.

States
multi-valued list of button display states:

0 or 1 = enabled

2 = disabled
If this list is null, all buttons are enabled.

Captions
multi-valued list of button captions. Multi-line captions are supported – separate multiple lines with sub-value-marks.

HotKeys
multi-valued list of unique single-letter hot keys. If a hot key letter for a button is pressed, the corresponding button will be activated. This list (or any value in the list) may be null if no hot key is associated with the corresponding button.)
Opts
alignment options:

L = buttons are left-justified within the bar

R = buttons are right justified within the bar

C = buttons are centered horizontally within the bar

T = buttons are aligned at the top of the bar

B = buttons are aligned at the bottom of the bar

M = buttons are centered vertically within the bar

Btn
number of the button which is initially active. If zero, then the first button will be active initially.
TermDef()
terminal definitions set up by SUI.GET.TERM.

Output arguments:

Btn
number of the currently active button.
Chr
alpha or numeric character that caused this function to return (used for HotKey matching in a button bar).

RtnCom
command code that caused this routine to return. This is normally TERM.ENTER$, TERM.TAB$, TERM.STAB$, TERM.PGUP$, TERM.PGDN$, TERM.HOME$, TERM.END$, TERM.F1$ … TERM.SF12$. If the mouse was clicked outside of the button bar, RtnCom will be TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$ or TERM.MIDBUTTON$.

Smart User Interface Library Miscellaneous Functions

SUI.MESSAGE.BOX

The SUI.MESSAGE.BOX subroutine is used to display a warning or information message and wait for the user to acknowledge the message by clicking a button. The message can contain multiple lines and is automatically “wrapped” to fit the width of the box. The set of buttons is specified by the calling program. This function uses windowing if it is supported. If windowing is not supported, the command code returned is TERM.REFRESH$ and the calling application must refresh the original screen. The number of the button which the user clicked to dismiss the message is returned in the Btn argument.
Calling syntax:

CALL SUI.MESSAGE.BOX(Left, Top, Width, Height, Message, Captions, HotKeys, FuncKeys, Opts, Btn, RtnCom, MAT TermDef)

Input arguments:

Left, Top
upper-left corner of message box (absolute screen coordinates).
Width, Height
size of box. If Height is zero, the actual height is calculated from the number of lines required to display the message.

Message
message to display in the box. Multiple lines are separated by value-marks.

Captions
multi-valued list of button captions. All buttons are must fit on a single line, so captions may not contain multiple lines.

HotKeys
multi-valued list of unique single-letter hot keys. If a hot key letter for a button is pressed, the corresponding button will be activated. This list (or any value in the list) may be null if no hot key is associated with the corresponding button.)
FuncKeys
multi-valued list of function key command codes (TERM.F1$ … TERM.SF12$) which provide a keyboard shortcut for any buttons. This list (or any value in the list) may be null if no function key is associated with the corresponding button.)
Opts
options:

B = sound the “bell” after displaying the message.

D = draw frame using double lines.

H = highlight text using the SUICFG.ACTIVE.TEXT

attribute

Btn
number of the button with is initially active. If zero, the first button will be active initially.

TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

Btn
the number of the button that was “clicked” to dismiss the box.

RtnCom
normally zero, or TERM.REFRESH$ if the terminal does not support windowing and the calling program needs to refresh the screen. Otherwise it may be an error code.

TermDef()
TERM.MOUSEADDR updated to reflect last mouse click position.
SUI.MOUSE.HIT

The SUI.MOUSE.HIT subroutine is used to test if a mouse click (or double-click) occurred within a specified area. This routine is normally called by the application program when the command code returned by one of the input functions is one of the mouse commands (TERM.LEFTBUTTON$, TERM.RIGHTBUTTON$, TERM.MIDBUTTON$, TERM.DBLLEFTBUTTON$, TERM.DBLRIGHTBUTTON$, TERM.DBLMIDBUTTON$). Typically, the position and size of each screen element (which could be “clicked”) is passed to this function in a loop, looking for a hit. If a hit is found, the application should activate that screen element (by calling the input routine for the element.)
Calling syntax:

CALL SUI.MOUSE.HIT(Left, Top, Width, Height, WinID, Hit,
MAT TermDef)

Input arguments:

Left, Top
upper-left corner of test area (relative to the specified or current window).
Width, Height
size of the test area.

WinID
window ID to test, or zero for current window.
TermDef()
terminal definitions set up by SUI.GET.TERM.
Output arguments:

Hit
1 if the last mouse click is within the test area, otherwise 0.

Smart User Interface Library Utilities

SUI.TEST.KEYBOARD

The SUI.TEST.KEYBOARD program is used to test the keyboard input functions and the terminal definition. The program accepts keystrokes and displays the printable character pressed, or the terminal-independent command name for the key that was pressed. Test all cursor, editing and function (shifted & un-shifted) keys, as well as Shift+Tab and Shift+Enter. If your Multi-Value platform normally performs case-insensitive string compares, pay careful attention to the mouse click and double-click response, as the raw data for these commands is identical except for case.

SUI.TEST.ATTRIBUTES

The SUI.TEST.ATTRIBUTES program is used to test the display attributes, borders and box drawing capabilities of the terminal.

SUI.TEST

The SUI.TEST program is a simulated data entry program which uses windowing, labels, single and multi-line text fields, single and multi-selection list boxes, a button bar, function keys and a message box. It is designed to illustrate how each of the screen elements looks and functions on different terminal types or configurations.

SETUP.ACCUTERM.COLORS

The SETUP.ACCUTERM.COLORS utility is useful for setting up AccuTerm 2K2 with Visual Styles. This program creates and runs a VBA script to initialize the palette, attribute colors and border effects for best use with the Smart User Interface Library.

